{"title":"基于中心性度量的云故障定位","authors":"R. NarayanaaS, M. Sivaranjan, S. LekshmiR","doi":"10.1109/STC55697.2022.00033","DOIUrl":null,"url":null,"abstract":"Fault localization is an imperative method in fault tolerance in a distributed environment that designs a blueprint for continuing the ongoing process even when one or many modules are non-functional. Visualizing a distributed environment as a graph, whose nodes represent faults (fault graph), allows us to introduce probabilistic weights to both edges and nodes that cause the faults. With multiple modules like databases, run-time cloud, etc. making up a distributed environment and extensively, a cloud environment, we aim to address the problem of optimally and accurately performing fault localization in a distributed environment by modifying the Graph optimization approach to localization and centrality, specific to fault graphs.","PeriodicalId":170123,"journal":{"name":"2022 IEEE 29th Annual Software Technology Conference (STC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Localization in Cloud using Centrality Measures\",\"authors\":\"R. NarayanaaS, M. Sivaranjan, S. LekshmiR\",\"doi\":\"10.1109/STC55697.2022.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault localization is an imperative method in fault tolerance in a distributed environment that designs a blueprint for continuing the ongoing process even when one or many modules are non-functional. Visualizing a distributed environment as a graph, whose nodes represent faults (fault graph), allows us to introduce probabilistic weights to both edges and nodes that cause the faults. With multiple modules like databases, run-time cloud, etc. making up a distributed environment and extensively, a cloud environment, we aim to address the problem of optimally and accurately performing fault localization in a distributed environment by modifying the Graph optimization approach to localization and centrality, specific to fault graphs.\",\"PeriodicalId\":170123,\"journal\":{\"name\":\"2022 IEEE 29th Annual Software Technology Conference (STC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 29th Annual Software Technology Conference (STC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STC55697.2022.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 29th Annual Software Technology Conference (STC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STC55697.2022.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fault Localization in Cloud using Centrality Measures
Fault localization is an imperative method in fault tolerance in a distributed environment that designs a blueprint for continuing the ongoing process even when one or many modules are non-functional. Visualizing a distributed environment as a graph, whose nodes represent faults (fault graph), allows us to introduce probabilistic weights to both edges and nodes that cause the faults. With multiple modules like databases, run-time cloud, etc. making up a distributed environment and extensively, a cloud environment, we aim to address the problem of optimally and accurately performing fault localization in a distributed environment by modifying the Graph optimization approach to localization and centrality, specific to fault graphs.