基于Facebook状态更新的深度学习人格识别

Jianguo Yu, K. Markov
{"title":"基于Facebook状态更新的深度学习人格识别","authors":"Jianguo Yu, K. Markov","doi":"10.1109/ICAWST.2017.8256484","DOIUrl":null,"url":null,"abstract":"Many approaches have been proposed to automatically infer users personality from their social networks activities. However, the performance of these approaches depends heavily on the data representation. In this work, we apply deep learning methods to automatically learn suitable data representation for the personality recognition task. In our experiments, we used the Facebook status updates data. We investigated several neural network architectures such as fully-connected (FC) networks, convolutional networks (CNN) and recurrent networks (RNN) on the myPersonality shared task and compared them with some shallow learning algorithms. Our experiments showed that CNN with average pooling is better than both the RNN and FC. Convolutional architecturewith average pooling achieved the best results 60.0±6.5%.","PeriodicalId":378618,"journal":{"name":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Deep learning based personality recognition from Facebook status updates\",\"authors\":\"Jianguo Yu, K. Markov\",\"doi\":\"10.1109/ICAWST.2017.8256484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many approaches have been proposed to automatically infer users personality from their social networks activities. However, the performance of these approaches depends heavily on the data representation. In this work, we apply deep learning methods to automatically learn suitable data representation for the personality recognition task. In our experiments, we used the Facebook status updates data. We investigated several neural network architectures such as fully-connected (FC) networks, convolutional networks (CNN) and recurrent networks (RNN) on the myPersonality shared task and compared them with some shallow learning algorithms. Our experiments showed that CNN with average pooling is better than both the RNN and FC. Convolutional architecturewith average pooling achieved the best results 60.0±6.5%.\",\"PeriodicalId\":378618,\"journal\":{\"name\":\"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAWST.2017.8256484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAWST.2017.8256484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

已经提出了许多方法来从用户的社交网络活动中自动推断用户的个性。然而,这些方法的性能在很大程度上取决于数据表示。在这项工作中,我们应用深度学习方法来自动学习适合人格识别任务的数据表示。在我们的实验中,我们使用了Facebook状态更新数据。我们在myPersonality共享任务上研究了几种神经网络架构,如全连接(FC)网络、卷积网络(CNN)和循环网络(RNN),并将它们与一些浅层学习算法进行了比较。我们的实验表明,具有平均池化的CNN比RNN和FC都要好。使用平均池化的卷积架构达到了60.0±6.5%的最佳效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning based personality recognition from Facebook status updates
Many approaches have been proposed to automatically infer users personality from their social networks activities. However, the performance of these approaches depends heavily on the data representation. In this work, we apply deep learning methods to automatically learn suitable data representation for the personality recognition task. In our experiments, we used the Facebook status updates data. We investigated several neural network architectures such as fully-connected (FC) networks, convolutional networks (CNN) and recurrent networks (RNN) on the myPersonality shared task and compared them with some shallow learning algorithms. Our experiments showed that CNN with average pooling is better than both the RNN and FC. Convolutional architecturewith average pooling achieved the best results 60.0±6.5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep convolutional neural network classifier for travel patterns using binary sensors Establishing the application of personal healthcare service system for cancer patients Disaster state information management gis system based on tiled diplay environment Keynote speech I: Big data, non-big data, and algorithms for recognizing the real world data Improving the performance of lossless reversible steganography via data sharing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1