{"title":"设计最优抽样方案","authors":"Johan Sward, Filip Elvander, A. Jakobsson","doi":"10.23919/EUSIPCO.2017.8081340","DOIUrl":null,"url":null,"abstract":"In this work, we propose a method for finding an optimal, non-uniform, sampling scheme for a general class of signals in which the signal measurements may be non-linear functions of the parameters to be estimated. Formulated as a convex optimization problem reminiscent of the sensor selection problem, the method determines an optimal sampling scheme given a suitable estimation bound on the parameters of interest. The formulation also allows for putting emphasis on a particular set of parameters of interest by scaling the optimization problem in such a way that the bound to be minimized becomes more sensitive to these parameters. For the case of imprecise a priori knowledge of these parameters, we present a framework for customizing the sampling scheme to take such uncertainty into account. Numerical examples illustrate the efficiency of the proposed scheme.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Designing optimal sampling schemes\",\"authors\":\"Johan Sward, Filip Elvander, A. Jakobsson\",\"doi\":\"10.23919/EUSIPCO.2017.8081340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a method for finding an optimal, non-uniform, sampling scheme for a general class of signals in which the signal measurements may be non-linear functions of the parameters to be estimated. Formulated as a convex optimization problem reminiscent of the sensor selection problem, the method determines an optimal sampling scheme given a suitable estimation bound on the parameters of interest. The formulation also allows for putting emphasis on a particular set of parameters of interest by scaling the optimization problem in such a way that the bound to be minimized becomes more sensitive to these parameters. For the case of imprecise a priori knowledge of these parameters, we present a framework for customizing the sampling scheme to take such uncertainty into account. Numerical examples illustrate the efficiency of the proposed scheme.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this work, we propose a method for finding an optimal, non-uniform, sampling scheme for a general class of signals in which the signal measurements may be non-linear functions of the parameters to be estimated. Formulated as a convex optimization problem reminiscent of the sensor selection problem, the method determines an optimal sampling scheme given a suitable estimation bound on the parameters of interest. The formulation also allows for putting emphasis on a particular set of parameters of interest by scaling the optimization problem in such a way that the bound to be minimized becomes more sensitive to these parameters. For the case of imprecise a priori knowledge of these parameters, we present a framework for customizing the sampling scheme to take such uncertainty into account. Numerical examples illustrate the efficiency of the proposed scheme.