面向知识图推理的图意图神经网络

Weihao Jiang, Yao Fu, Hong Zhao, Junhong Wan, Shi Pu
{"title":"面向知识图推理的图意图神经网络","authors":"Weihao Jiang, Yao Fu, Hong Zhao, Junhong Wan, Shi Pu","doi":"10.1109/IJCNN55064.2022.9892730","DOIUrl":null,"url":null,"abstract":"Reasoning over knowledge graph explores valuable information for amounts of tasks. However, most methods adopt the coarse-grained and single representation of each entity for reasoning, ignoring simultaneously processing various semantics contained in internal information and external information. On the one hand, the surrounding nodes and relations existing in the graph structure express the internal information of the entity, which contains abundant graph context information, but the extracted internal features are still limited. On the other hand, different scenarios as the external information focus on different aspects of the certain entity, meanwhile the external information should have message interaction with the internal information to learn the adaptive embedding, both of which are seldom considered by the existing methods. In this paper, we propose a Graph Intention Neural Network (GINN) for knowledge graph reasoning to explore fine-grained entity representations, which use external-intention and internal-intention simultaneously. For external-intention, a novel constructed matrix is used to calculate the triple-attention that determines the aggregated information to learn different embeddings adapting to the different scenarios. Furthermore, a communication bridge is leveraged to have message interaction between the external information and the internal information. For the internal-intention, the surrounding nodes and relations are integrated to update the entity embedding with the consideration of the interaction features between the external and internal information. The triple-attention can capture relevancy among the reasoning hops, which contributes to figuring out reasonable paths. We evaluate our approach on real-world datasets, achieving better performance compared to the state-of-the-art methods and showing plausible interpretability for the results.","PeriodicalId":106974,"journal":{"name":"2022 International Joint Conference on Neural Networks (IJCNN)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Graph Intention Neural Network for Knowledge Graph Reasoning\",\"authors\":\"Weihao Jiang, Yao Fu, Hong Zhao, Junhong Wan, Shi Pu\",\"doi\":\"10.1109/IJCNN55064.2022.9892730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reasoning over knowledge graph explores valuable information for amounts of tasks. However, most methods adopt the coarse-grained and single representation of each entity for reasoning, ignoring simultaneously processing various semantics contained in internal information and external information. On the one hand, the surrounding nodes and relations existing in the graph structure express the internal information of the entity, which contains abundant graph context information, but the extracted internal features are still limited. On the other hand, different scenarios as the external information focus on different aspects of the certain entity, meanwhile the external information should have message interaction with the internal information to learn the adaptive embedding, both of which are seldom considered by the existing methods. In this paper, we propose a Graph Intention Neural Network (GINN) for knowledge graph reasoning to explore fine-grained entity representations, which use external-intention and internal-intention simultaneously. For external-intention, a novel constructed matrix is used to calculate the triple-attention that determines the aggregated information to learn different embeddings adapting to the different scenarios. Furthermore, a communication bridge is leveraged to have message interaction between the external information and the internal information. For the internal-intention, the surrounding nodes and relations are integrated to update the entity embedding with the consideration of the interaction features between the external and internal information. The triple-attention can capture relevancy among the reasoning hops, which contributes to figuring out reasonable paths. We evaluate our approach on real-world datasets, achieving better performance compared to the state-of-the-art methods and showing plausible interpretability for the results.\",\"PeriodicalId\":106974,\"journal\":{\"name\":\"2022 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN55064.2022.9892730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN55064.2022.9892730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

知识图推理为大量的任务探索有价值的信息。然而,大多数方法采用对每个实体的粗粒度和单一表示进行推理,忽略了同时处理内部信息和外部信息中包含的各种语义。一方面,图结构中存在的周围节点和关系表达了实体的内部信息,其中包含了丰富的图上下文信息,但提取的内部特征仍然有限。另一方面,不同场景作为外部信息关注某一实体的不同方面,同时外部信息需要与内部信息进行消息交互来学习自适应嵌入,而现有方法很少考虑这两点。本文提出了一种用于知识图推理的图意图神经网络(GINN),以探索同时使用外部意图和内部意图的细粒度实体表示。对于外部意向,采用一种新的构造矩阵来计算确定聚合信息的三重注意,以学习适应不同场景的不同嵌入。此外,还利用通信桥在外部信息和内部信息之间进行消息交互。对于内部意图,考虑到外部信息和内部信息之间的交互特征,集成周围节点和关系来更新实体嵌入。三重注意可以捕捉推理跳间的相关性,有助于找出合理的路径。我们在真实世界的数据集上评估了我们的方法,与最先进的方法相比,获得了更好的性能,并显示了结果的合理可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph Intention Neural Network for Knowledge Graph Reasoning
Reasoning over knowledge graph explores valuable information for amounts of tasks. However, most methods adopt the coarse-grained and single representation of each entity for reasoning, ignoring simultaneously processing various semantics contained in internal information and external information. On the one hand, the surrounding nodes and relations existing in the graph structure express the internal information of the entity, which contains abundant graph context information, but the extracted internal features are still limited. On the other hand, different scenarios as the external information focus on different aspects of the certain entity, meanwhile the external information should have message interaction with the internal information to learn the adaptive embedding, both of which are seldom considered by the existing methods. In this paper, we propose a Graph Intention Neural Network (GINN) for knowledge graph reasoning to explore fine-grained entity representations, which use external-intention and internal-intention simultaneously. For external-intention, a novel constructed matrix is used to calculate the triple-attention that determines the aggregated information to learn different embeddings adapting to the different scenarios. Furthermore, a communication bridge is leveraged to have message interaction between the external information and the internal information. For the internal-intention, the surrounding nodes and relations are integrated to update the entity embedding with the consideration of the interaction features between the external and internal information. The triple-attention can capture relevancy among the reasoning hops, which contributes to figuring out reasonable paths. We evaluate our approach on real-world datasets, achieving better performance compared to the state-of-the-art methods and showing plausible interpretability for the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parameterization of Vector Symbolic Approach for Sequence Encoding Based Visual Place Recognition Nested compression of convolutional neural networks with Tucker-2 decomposition SQL-Rank++: A Novel Listwise Approach for Collaborative Ranking with Implicit Feedback ACTSS: Input Detection Defense against Backdoor Attacks via Activation Subset Scanning ADV-ResNet: Residual Network with Controlled Adversarial Regularization for Effective Classification of Practical Time Series Under Training Data Scarcity Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1