滑转向轮腿机器人先导-跟随控制器的实现

Luc Xuan Tu Phung, I. Sharf, B. Beckman
{"title":"滑转向轮腿机器人先导-跟随控制器的实现","authors":"Luc Xuan Tu Phung, I. Sharf, B. Beckman","doi":"10.1109/AMC.2016.7496367","DOIUrl":null,"url":null,"abstract":"In this paper, we present a leader-follower controller for the Micro-Hydraulic Toolkit (MHT), a skid-steering wheel-legged robot designed by Defence Research and Development Canada - Suffield Research Centre. The objective of the controller is to maneuver the MHT towards a desired position with respect to a designated leader. Using the range and bearing of the leader from the robot, the leader-follower controller computes the desired wheel velocities of the MHT to achieve leader-follower formation control. In addition to performing wheeled locomotion to follow the leader, the MHT is capable of using its legs to reconfigure its posture. Thus, moving beyond standard implementations, the leader-follower control strategy presented in this paper is combined with a velocity-based inverse kinematics controller developed in previous work to control the posture of the MHT during leader-follower maneuvers. The results of the leader-follower scenarios implemented in simulation and on the physical MHT demonstrate the robot's ability to execute leader-follower formation control and posture control simultaneously, adding to the versatility of the vehicle to negotiate uneven terrains.","PeriodicalId":273847,"journal":{"name":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Implementation of a leader-follower controller for a skid-steering wheel-legged robot\",\"authors\":\"Luc Xuan Tu Phung, I. Sharf, B. Beckman\",\"doi\":\"10.1109/AMC.2016.7496367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a leader-follower controller for the Micro-Hydraulic Toolkit (MHT), a skid-steering wheel-legged robot designed by Defence Research and Development Canada - Suffield Research Centre. The objective of the controller is to maneuver the MHT towards a desired position with respect to a designated leader. Using the range and bearing of the leader from the robot, the leader-follower controller computes the desired wheel velocities of the MHT to achieve leader-follower formation control. In addition to performing wheeled locomotion to follow the leader, the MHT is capable of using its legs to reconfigure its posture. Thus, moving beyond standard implementations, the leader-follower control strategy presented in this paper is combined with a velocity-based inverse kinematics controller developed in previous work to control the posture of the MHT during leader-follower maneuvers. The results of the leader-follower scenarios implemented in simulation and on the physical MHT demonstrate the robot's ability to execute leader-follower formation control and posture control simultaneously, adding to the versatility of the vehicle to negotiate uneven terrains.\",\"PeriodicalId\":273847,\"journal\":{\"name\":\"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMC.2016.7496367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2016.7496367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了由加拿大国防研究与发展-萨菲尔德研究中心设计的滑转向轮腿机器人微液压工具包(MHT)的一种领导-跟随控制器。管制员的目标是操纵MHT相对于指定的领导者向期望的位置移动。leader-follower控制器利用机器人leader的距离和方位,计算出MHT的期望轮速,实现leader-follower的编队控制。除了进行轮式运动来跟随领导者,MHT还能够使用它的腿来重新配置它的姿势。因此,超越标准实现,本文提出的领导者-追随者控制策略与先前工作中开发的基于速度的逆运动学控制器相结合,以控制领导者-追随者机动期间MHT的姿态。在模拟和物理MHT上实施的领导者-追随者场景的结果表明,机器人能够同时执行领导者-追随者编队控制和姿态控制,增加了车辆在不平坦地形上的多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of a leader-follower controller for a skid-steering wheel-legged robot
In this paper, we present a leader-follower controller for the Micro-Hydraulic Toolkit (MHT), a skid-steering wheel-legged robot designed by Defence Research and Development Canada - Suffield Research Centre. The objective of the controller is to maneuver the MHT towards a desired position with respect to a designated leader. Using the range and bearing of the leader from the robot, the leader-follower controller computes the desired wheel velocities of the MHT to achieve leader-follower formation control. In addition to performing wheeled locomotion to follow the leader, the MHT is capable of using its legs to reconfigure its posture. Thus, moving beyond standard implementations, the leader-follower control strategy presented in this paper is combined with a velocity-based inverse kinematics controller developed in previous work to control the posture of the MHT during leader-follower maneuvers. The results of the leader-follower scenarios implemented in simulation and on the physical MHT demonstrate the robot's ability to execute leader-follower formation control and posture control simultaneously, adding to the versatility of the vehicle to negotiate uneven terrains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D modeling and nonlinear control using algorithmic differentiation for mono-wheel robot Robust H∞ control for Active Magnetic Bearing system with imbalance of the rotor Double-segment sliding mode control for permanent magnet synchronous motor servo drives High back-drivable pseudo I-PD torque control using load-side torque observer with torsion torque sensor Position control system based on inertia measurement unit sensor fusion with Kalman filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1