写放大由于在闪存上的ECC或留下那些位错误单独

Sangwhan Moon, A. Reddy
{"title":"写放大由于在闪存上的ECC或留下那些位错误单独","authors":"Sangwhan Moon, A. Reddy","doi":"10.1109/MSST.2012.6232375","DOIUrl":null,"url":null,"abstract":"While flash memory is receiving significant attention because of many attractive properties, concerns about write endurance delay the wider deployment of the flash memory. This paper analyzes the effectiveness of protection schemes designed for flash memory, such as ECC and scrubbing. The bit error rate of flash memory is a function of the number of program-erase cycles the cell has gone through, making the reliability dependent on time and workload. Moreover, some of the protection schemes require additional write operations, which degrade flash memory's reliability. These issues make it more complex to reveal the relationship between the protection schemes and flash memory's lifetime. In this paper, a Markov model based analysis of the protection schemes is presented. Our model considers the time varying reliability of flash memory as well as write amplification of various protection schemes such as ECC. Our study shows that write amplification from these various sources can significantly affect the benefits of these schemes in improving the lifetime. Based on the results from our analysis, we propose that bit errors within a page be left uncorrected until a threshold of errors are accumulated. We show that such an approach can significantly improve lifetimes by up to 40%.","PeriodicalId":348234,"journal":{"name":"012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Write amplification due to ECC on flash memory or leave those bit errors alone\",\"authors\":\"Sangwhan Moon, A. Reddy\",\"doi\":\"10.1109/MSST.2012.6232375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While flash memory is receiving significant attention because of many attractive properties, concerns about write endurance delay the wider deployment of the flash memory. This paper analyzes the effectiveness of protection schemes designed for flash memory, such as ECC and scrubbing. The bit error rate of flash memory is a function of the number of program-erase cycles the cell has gone through, making the reliability dependent on time and workload. Moreover, some of the protection schemes require additional write operations, which degrade flash memory's reliability. These issues make it more complex to reveal the relationship between the protection schemes and flash memory's lifetime. In this paper, a Markov model based analysis of the protection schemes is presented. Our model considers the time varying reliability of flash memory as well as write amplification of various protection schemes such as ECC. Our study shows that write amplification from these various sources can significantly affect the benefits of these schemes in improving the lifetime. Based on the results from our analysis, we propose that bit errors within a page be left uncorrected until a threshold of errors are accumulated. We show that such an approach can significantly improve lifetimes by up to 40%.\",\"PeriodicalId\":348234,\"journal\":{\"name\":\"012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSST.2012.6232375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSST.2012.6232375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

虽然快闪记忆体因其许多吸引人的特性而受到广泛关注,但对写入持久性的担忧却延迟了快闪记忆体的广泛部署。本文分析了针对闪存设计的ECC和刷洗等保护方案的有效性。闪存的误码率是单元所经历的程序擦除循环次数的函数,这使得可靠性依赖于时间和工作负载。此外,一些保护方案需要额外的写操作,这降低了闪存的可靠性。这些问题使得揭示保护方案与闪存寿命之间的关系变得更加复杂。本文提出了一种基于马尔科夫模型的保护方案分析方法。我们的模型考虑了闪存的时变可靠性以及各种保护方案(如ECC)的写放大。我们的研究表明,来自这些不同来源的写入放大可以显着影响这些方案在改善寿命方面的好处。根据我们的分析结果,我们建议在错误累积的阈值之前不纠正页面内的比特错误。我们表明,这种方法可以显著提高寿命高达40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Write amplification due to ECC on flash memory or leave those bit errors alone
While flash memory is receiving significant attention because of many attractive properties, concerns about write endurance delay the wider deployment of the flash memory. This paper analyzes the effectiveness of protection schemes designed for flash memory, such as ECC and scrubbing. The bit error rate of flash memory is a function of the number of program-erase cycles the cell has gone through, making the reliability dependent on time and workload. Moreover, some of the protection schemes require additional write operations, which degrade flash memory's reliability. These issues make it more complex to reveal the relationship between the protection schemes and flash memory's lifetime. In this paper, a Markov model based analysis of the protection schemes is presented. Our model considers the time varying reliability of flash memory as well as write amplification of various protection schemes such as ECC. Our study shows that write amplification from these various sources can significantly affect the benefits of these schemes in improving the lifetime. Based on the results from our analysis, we propose that bit errors within a page be left uncorrected until a threshold of errors are accumulated. We show that such an approach can significantly improve lifetimes by up to 40%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HRAID6ML: A hybrid RAID6 storage architecture with mirrored logging Storage challenges at Los Alamos National Lab Shortcut-JFS: A write efficient journaling file system for phase change memory SLO-aware hybrid store On the speedup of single-disk failure recovery in XOR-coded storage systems: Theory and practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1