利用进化算法预测智能家居耗电量

A. Elmahalawy, Newal Elfishawy, M. N. El-dien
{"title":"利用进化算法预测智能家居耗电量","authors":"A. Elmahalawy, Newal Elfishawy, M. N. El-dien","doi":"10.1109/MCIT.2010.5444847","DOIUrl":null,"url":null,"abstract":"One of the leading technologies is the Smart Home, where the home itself recognizes certain changes in home environment and provides adequate services to residents. Also, the Smart Home can anticipate the any dangerous state so it can adapt itself for this future case. Our goal is to anticipate states with too large power take-off; it means to eliminate power spikes. Program allows starting of simulation also without anticipation. The results are suitable for comparison with simulations with the block of anticipation. Anticipation based on evolutionary algorithms. So, we can see the quality of anticipation in the best way.","PeriodicalId":285648,"journal":{"name":"2010 International Conference on Multimedia Computing and Information Technology (MCIT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Anticipation the consumed electrical power in Smart Home using evolutionary algorithms\",\"authors\":\"A. Elmahalawy, Newal Elfishawy, M. N. El-dien\",\"doi\":\"10.1109/MCIT.2010.5444847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the leading technologies is the Smart Home, where the home itself recognizes certain changes in home environment and provides adequate services to residents. Also, the Smart Home can anticipate the any dangerous state so it can adapt itself for this future case. Our goal is to anticipate states with too large power take-off; it means to eliminate power spikes. Program allows starting of simulation also without anticipation. The results are suitable for comparison with simulations with the block of anticipation. Anticipation based on evolutionary algorithms. So, we can see the quality of anticipation in the best way.\",\"PeriodicalId\":285648,\"journal\":{\"name\":\"2010 International Conference on Multimedia Computing and Information Technology (MCIT)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Multimedia Computing and Information Technology (MCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCIT.2010.5444847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Multimedia Computing and Information Technology (MCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCIT.2010.5444847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

其中一项领先的技术是智能家居,在智能家居中,家庭本身可以识别家庭环境的某些变化,并为居民提供适当的服务。此外,智能家居可以预测任何危险的状态,因此它可以适应未来的情况。我们的目标是预测功率输出过大的状态;意思是消除能量峰值。程序允许启动模拟也没有预期。结果适合于与具有预期块的模拟进行比较。基于进化算法的预测。所以,我们可以用最好的方式来观察预期的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anticipation the consumed electrical power in Smart Home using evolutionary algorithms
One of the leading technologies is the Smart Home, where the home itself recognizes certain changes in home environment and provides adequate services to residents. Also, the Smart Home can anticipate the any dangerous state so it can adapt itself for this future case. Our goal is to anticipate states with too large power take-off; it means to eliminate power spikes. Program allows starting of simulation also without anticipation. The results are suitable for comparison with simulations with the block of anticipation. Anticipation based on evolutionary algorithms. So, we can see the quality of anticipation in the best way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multimodal biometric recognition inspired by visual cortex and Support vector machine classifier Partial image retrieval using SIFT based on illumination invariant features Extracting membership functions by ACS algorithm without specifying actual minimum support Gabor wavelet for road sign detection and recognition using a hybrid classifier Prediction model of reservoir fluids properties using Sensitivity Based Linear Learning method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1