一个应用程序无关的节能MPI运行时的案例

Akshay Venkatesh, Abhinav Vishnu, Khaled Hamidouche, Nathan R. Tallent, D. Panda, D. Kerbyson, A. Hoisie
{"title":"一个应用程序无关的节能MPI运行时的案例","authors":"Akshay Venkatesh, Abhinav Vishnu, Khaled Hamidouche, Nathan R. Tallent, D. Panda, D. Kerbyson, A. Hoisie","doi":"10.1145/2807591.2807658","DOIUrl":null,"url":null,"abstract":"Power has become a major impediment in designing large scale high-end systems. Message Passing Interface (MPI) is the de facto communication interface used as the back-end for designing applications, programming models and runtime for these systems. Slack --- the time spent by an MPI process in a single MPI call---provides a potential for energy and power savings, if an appropriate power reduction technique such as core-idling/Dynamic Voltage and Frequency Scaling (DVFS) can be applied without affecting the application's performance. Existing techniques that exploit slack for power savings assume that application behavior repeats across iterations/executions. However, an increasing use of adaptive and data-dependent workloads combined with system factors (OS noise, congestion) negates this assumption. This paper proposes and implements Energy Aware MPI (EAM) --- an application-oblivious energy-efficient MPI runtime. EAM uses a combination of communication models for common MPI primitives (point-to-point, collective, progress, blocking/non-blocking) and an online observation of slack to maximize energy efficiency and to honor performance degradation limits. Each power lever incurs time overhead, which must be amortized over slack to minimize degradation. When predicted communication time exceeds a lever overhead, the lever is used as soon as possible --- to maximize energy efficiency. When a misprediction occurs, the lever(s) are used automatically at specific intervals for amortization. We implement EAM using MVAPICH2 and evaluate it on ten applications using up to 4,096 processes. Our performance evaluation on an InfiniBand cluster indicates that EAM can reduce energy consumption by 5-41% in comparison to the default approach, which prioritizes performance alone, with negligible (less than 4% in all cases) performance loss.","PeriodicalId":117494,"journal":{"name":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"A case for application-oblivious energy-efficient MPI runtime\",\"authors\":\"Akshay Venkatesh, Abhinav Vishnu, Khaled Hamidouche, Nathan R. Tallent, D. Panda, D. Kerbyson, A. Hoisie\",\"doi\":\"10.1145/2807591.2807658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power has become a major impediment in designing large scale high-end systems. Message Passing Interface (MPI) is the de facto communication interface used as the back-end for designing applications, programming models and runtime for these systems. Slack --- the time spent by an MPI process in a single MPI call---provides a potential for energy and power savings, if an appropriate power reduction technique such as core-idling/Dynamic Voltage and Frequency Scaling (DVFS) can be applied without affecting the application's performance. Existing techniques that exploit slack for power savings assume that application behavior repeats across iterations/executions. However, an increasing use of adaptive and data-dependent workloads combined with system factors (OS noise, congestion) negates this assumption. This paper proposes and implements Energy Aware MPI (EAM) --- an application-oblivious energy-efficient MPI runtime. EAM uses a combination of communication models for common MPI primitives (point-to-point, collective, progress, blocking/non-blocking) and an online observation of slack to maximize energy efficiency and to honor performance degradation limits. Each power lever incurs time overhead, which must be amortized over slack to minimize degradation. When predicted communication time exceeds a lever overhead, the lever is used as soon as possible --- to maximize energy efficiency. When a misprediction occurs, the lever(s) are used automatically at specific intervals for amortization. We implement EAM using MVAPICH2 and evaluate it on ten applications using up to 4,096 processes. Our performance evaluation on an InfiniBand cluster indicates that EAM can reduce energy consumption by 5-41% in comparison to the default approach, which prioritizes performance alone, with negligible (less than 4% in all cases) performance loss.\",\"PeriodicalId\":117494,\"journal\":{\"name\":\"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2807591.2807658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2807591.2807658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

功率已经成为设计大规模高端系统的主要障碍。消息传递接口(MPI)是实际的通信接口,用作为这些系统设计应用程序、编程模型和运行时的后端。如果能够在不影响应用程序性能的情况下采用适当的降功耗技术(如核心空转/动态电压和频率缩放(DVFS)),则MPI进程在单个MPI调用中花费的时间(Slack)可能会节省能源和电力。利用空闲来节省电力的现有技术假设应用程序行为在迭代/执行中重复。然而,越来越多地使用自适应和数据依赖的工作负载,再加上系统因素(操作系统噪声、拥塞),否定了这一假设。本文提出并实现了能源感知MPI (Energy Aware MPI, EAM)——一个与应用无关的节能MPI运行时。EAM使用了通用MPI原语(点对点、集体、进度、阻塞/非阻塞)的通信模型组合,以及对闲置的在线观察,以最大限度地提高能源效率,并遵守性能退化限制。每个动力杠杆都会产生时间开销,必须将其平摊在松弛上以最小化退化。当预测的通信时间超过杠杆开销时,就会尽快使用杠杆,以最大限度地提高能源效率。当出现错误预测时,杠杆会按特定的间隔自动使用以进行摊销。我们使用MVAPICH2实现EAM,并使用多达4,096个流程在10个应用程序上对其进行评估。我们对InfiniBand集群的性能评估表明,与默认方法相比,EAM可以减少5-41%的能耗,默认方法只优先考虑性能,性能损失可以忽略不计(在所有情况下都小于4%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A case for application-oblivious energy-efficient MPI runtime
Power has become a major impediment in designing large scale high-end systems. Message Passing Interface (MPI) is the de facto communication interface used as the back-end for designing applications, programming models and runtime for these systems. Slack --- the time spent by an MPI process in a single MPI call---provides a potential for energy and power savings, if an appropriate power reduction technique such as core-idling/Dynamic Voltage and Frequency Scaling (DVFS) can be applied without affecting the application's performance. Existing techniques that exploit slack for power savings assume that application behavior repeats across iterations/executions. However, an increasing use of adaptive and data-dependent workloads combined with system factors (OS noise, congestion) negates this assumption. This paper proposes and implements Energy Aware MPI (EAM) --- an application-oblivious energy-efficient MPI runtime. EAM uses a combination of communication models for common MPI primitives (point-to-point, collective, progress, blocking/non-blocking) and an online observation of slack to maximize energy efficiency and to honor performance degradation limits. Each power lever incurs time overhead, which must be amortized over slack to minimize degradation. When predicted communication time exceeds a lever overhead, the lever is used as soon as possible --- to maximize energy efficiency. When a misprediction occurs, the lever(s) are used automatically at specific intervals for amortization. We implement EAM using MVAPICH2 and evaluate it on ten applications using up to 4,096 processes. Our performance evaluation on an InfiniBand cluster indicates that EAM can reduce energy consumption by 5-41% in comparison to the default approach, which prioritizes performance alone, with negligible (less than 4% in all cases) performance loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal scheduling of in-situ analysis for large-scale scientific simulations Monetary cost optimizations for MPI-based HPC applications on Amazon clouds: checkpoints and replicated execution IOrchestra: supporting high-performance data-intensive applications in the cloud via collaborative virtualization An input-adaptive and in-place approach to dense tensor-times-matrix multiply Scalable sparse tensor decompositions in distributed memory systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1