基于便携式肌电读卡器的自动腿部手势识别

J. López-Leyva, E. Mejia-Gonzalez, J. Estrada-Lechuga, Raul I. Ramos-Garcia
{"title":"基于便携式肌电读卡器的自动腿部手势识别","authors":"J. López-Leyva, E. Mejia-Gonzalez, J. Estrada-Lechuga, Raul I. Ramos-Garcia","doi":"10.1109/ICMEAE.2019.00008","DOIUrl":null,"url":null,"abstract":"In this paper, recognition of leg gestures is performed using Linear Discriminant Analysis in order to propose a real application for prosthetic leg considering transfemoral amputee. As results, the confusion matrix shows the performance of the algorithm, where the Class #1 and #3 were the best classes classified (sensitivity is 100%), and Class #2 was the worst classified (sensitivity is 67%). In addition, the probability that the classifier ranks a randomly chosen positive instance higher than a randomly chosen negative for Class #2 and #4 is the same, AUC =0.94, and AUC =1 for Class #1 and #3. Although the hardware and algorithm used have adequate performance, the optimization and improve the real testing conditions are important requirements for real human applications.","PeriodicalId":422872,"journal":{"name":"2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Leg Gesture Recognition Based on Portable Electromyography Readers\",\"authors\":\"J. López-Leyva, E. Mejia-Gonzalez, J. Estrada-Lechuga, Raul I. Ramos-Garcia\",\"doi\":\"10.1109/ICMEAE.2019.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, recognition of leg gestures is performed using Linear Discriminant Analysis in order to propose a real application for prosthetic leg considering transfemoral amputee. As results, the confusion matrix shows the performance of the algorithm, where the Class #1 and #3 were the best classes classified (sensitivity is 100%), and Class #2 was the worst classified (sensitivity is 67%). In addition, the probability that the classifier ranks a randomly chosen positive instance higher than a randomly chosen negative for Class #2 and #4 is the same, AUC =0.94, and AUC =1 for Class #1 and #3. Although the hardware and algorithm used have adequate performance, the optimization and improve the real testing conditions are important requirements for real human applications.\",\"PeriodicalId\":422872,\"journal\":{\"name\":\"2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEAE.2019.00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEAE.2019.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用线性判别分析方法对假肢手势进行识别,为经股截肢者假肢的实际应用提供参考。作为结果,混淆矩阵显示了算法的性能,其中类别#1和#3是分类最好的类别(灵敏度为100%),类别#2是分类最差的类别(灵敏度为67%)。此外,分类器对类别#2和#4随机选择的正实例排序高于随机选择的负实例的概率是相同的,AUC =0.94,类别#1和#3的AUC =1。虽然所使用的硬件和算法具有足够的性能,但优化和改善真实测试条件是真实人体应用的重要要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Leg Gesture Recognition Based on Portable Electromyography Readers
In this paper, recognition of leg gestures is performed using Linear Discriminant Analysis in order to propose a real application for prosthetic leg considering transfemoral amputee. As results, the confusion matrix shows the performance of the algorithm, where the Class #1 and #3 were the best classes classified (sensitivity is 100%), and Class #2 was the worst classified (sensitivity is 67%). In addition, the probability that the classifier ranks a randomly chosen positive instance higher than a randomly chosen negative for Class #2 and #4 is the same, AUC =0.94, and AUC =1 for Class #1 and #3. Although the hardware and algorithm used have adequate performance, the optimization and improve the real testing conditions are important requirements for real human applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum entropy model applied to Reliability Centered Maintenance scheme for replaceable systems. Design and 3D printed implementation of a microgripper actuated by a piezoelectric stack ICMEAE 2019 Index A Comparison of Feature Extractors for Panorama Stitching in an Autonomous Car Architecture GABOT: Garbage Autonomous Collector for Indoors at Low Cost
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1