机器学习在电子组件质量风险因素分析中的应用

Brendan Reidy, D. Duggan, Bernard Glasauer, Peng Su, Ramtin Zand
{"title":"机器学习在电子组件质量风险因素分析中的应用","authors":"Brendan Reidy, D. Duggan, Bernard Glasauer, Peng Su, Ramtin Zand","doi":"10.1109/ISQED57927.2023.10129339","DOIUrl":null,"url":null,"abstract":"The rapid identification of contributing factors to failures in a high-volume electronic product manufacturing environment is critical to reduce disruption to production and mitigate potential quality and reliability risks. As system complexity and component usage continues to increase, it is becoming more and more challenging to manually process the large volume of data that are continuously generated by production processes. In this paper, we utilize various machine learning (ML) techniques to classify components on the printed circuit board assemblies (PCBAs) as defective or non-defective based on an input feature map including features like the date the component is manufactured, the side of board on which the component is placed, the location of the component on the board, etc. We then implement a feature importance algorithm to detect the underlying cause of the component failure. Three ML models including support vector machine, random forest, and neural network are trained and implemented for feature importance analysis using a dataset obtained from over 10 million components on various PCBA boards. Due to the intrinsic characteristics of the dataset, such as a significant imbalance between defective and non-defective cases, pre-processing techniques such as upsampling and downsampling are necessary to increase the performance of the models. The results show that all the developed ML models can achieve more than 99% accuracy. Finally, we show that our proposed feature importance approach is capable of correctly identifying the main cause of defects for given components.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Machine Learning for Quality Risk Factor Analysis of Electronic Assemblies\",\"authors\":\"Brendan Reidy, D. Duggan, Bernard Glasauer, Peng Su, Ramtin Zand\",\"doi\":\"10.1109/ISQED57927.2023.10129339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid identification of contributing factors to failures in a high-volume electronic product manufacturing environment is critical to reduce disruption to production and mitigate potential quality and reliability risks. As system complexity and component usage continues to increase, it is becoming more and more challenging to manually process the large volume of data that are continuously generated by production processes. In this paper, we utilize various machine learning (ML) techniques to classify components on the printed circuit board assemblies (PCBAs) as defective or non-defective based on an input feature map including features like the date the component is manufactured, the side of board on which the component is placed, the location of the component on the board, etc. We then implement a feature importance algorithm to detect the underlying cause of the component failure. Three ML models including support vector machine, random forest, and neural network are trained and implemented for feature importance analysis using a dataset obtained from over 10 million components on various PCBA boards. Due to the intrinsic characteristics of the dataset, such as a significant imbalance between defective and non-defective cases, pre-processing techniques such as upsampling and downsampling are necessary to increase the performance of the models. The results show that all the developed ML models can achieve more than 99% accuracy. Finally, we show that our proposed feature importance approach is capable of correctly identifying the main cause of defects for given components.\",\"PeriodicalId\":315053,\"journal\":{\"name\":\"2023 24th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 24th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED57927.2023.10129339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 24th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED57927.2023.10129339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在大批量电子产品制造环境中,快速识别导致故障的因素对于减少生产中断和减轻潜在的质量和可靠性风险至关重要。随着系统复杂性和组件使用量的不断增加,手工处理生产过程中不断产生的大量数据变得越来越具有挑战性。在本文中,我们利用各种机器学习(ML)技术根据输入特征映射将印刷电路板组件(pcb)上的组件分类为有缺陷或无缺陷,包括组件制造日期,组件放置的电路板侧面,组件在电路板上的位置等特征。然后,我们实现了一个特征重要性算法来检测组件故障的潜在原因。使用从各种PCBA板上超过1000万个组件获得的数据集,对包括支持向量机,随机森林和神经网络在内的三个ML模型进行了训练和实现,用于特征重要性分析。由于数据集的固有特征,如缺陷和非缺陷情况之间的显著不平衡,需要预处理技术,如上采样和下采样,以提高模型的性能。结果表明,所开发的机器学习模型的准确率均达到99%以上。最后,我们证明了我们提出的特征重要性方法能够正确地识别给定组件缺陷的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Machine Learning for Quality Risk Factor Analysis of Electronic Assemblies
The rapid identification of contributing factors to failures in a high-volume electronic product manufacturing environment is critical to reduce disruption to production and mitigate potential quality and reliability risks. As system complexity and component usage continues to increase, it is becoming more and more challenging to manually process the large volume of data that are continuously generated by production processes. In this paper, we utilize various machine learning (ML) techniques to classify components on the printed circuit board assemblies (PCBAs) as defective or non-defective based on an input feature map including features like the date the component is manufactured, the side of board on which the component is placed, the location of the component on the board, etc. We then implement a feature importance algorithm to detect the underlying cause of the component failure. Three ML models including support vector machine, random forest, and neural network are trained and implemented for feature importance analysis using a dataset obtained from over 10 million components on various PCBA boards. Due to the intrinsic characteristics of the dataset, such as a significant imbalance between defective and non-defective cases, pre-processing techniques such as upsampling and downsampling are necessary to increase the performance of the models. The results show that all the developed ML models can achieve more than 99% accuracy. Finally, we show that our proposed feature importance approach is capable of correctly identifying the main cause of defects for given components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metal Inter-layer Via Keep-out-zone in M3D IC: A Critical Process-aware Design Consideration HD2FPGA: Automated Framework for Accelerating Hyperdimensional Computing on FPGAs A Novel Stochastic LSTM Model Inspired by Quantum Machine Learning DC-Model: A New Method for Assisting the Analog Circuit Optimization Polynomial Formal Verification of a Processor: A RISC-V Case Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1