基于Loewner矩阵的高速无源分布式网络的高效随机暂态分析

Md. A. H. Talukder, M. Kabir, Sourajeet Roy, R. Khazaka
{"title":"基于Loewner矩阵的高速无源分布式网络的高效随机暂态分析","authors":"Md. A. H. Talukder, M. Kabir, Sourajeet Roy, R. Khazaka","doi":"10.1109/ISEMC.2014.6898971","DOIUrl":null,"url":null,"abstract":"Distributed networks with embedded parametric uncertainty can be characterized in the frequency-domain by tabulated augmented multiport S or Y-parameter responses based on a stochastic Galerkins formulation of the network equations. In this work, the Loewner Matrix approach is utilized to generate a compact SPICE-compatible macromodel of the stochastic distributed network from the tabulated frequency-domain data for transient analysis. The key attribute of this work is that the superior scaling of the computational complexity of the Loewner Matrix approach with respect to the augmented number of network ports allows for a more efficient generation of the macromodel than the classical Vector Fitting approach. This leads to faster transient analysis for problems involving large random spaces. The advantage of the proposed approach is validated using a numerical example.","PeriodicalId":279929,"journal":{"name":"2014 IEEE International Symposium on Electromagnetic Compatibility (EMC)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Efficient stochastic transient analysis of high-speed passive distributed networks using Loewner Matrix based macromodels\",\"authors\":\"Md. A. H. Talukder, M. Kabir, Sourajeet Roy, R. Khazaka\",\"doi\":\"10.1109/ISEMC.2014.6898971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed networks with embedded parametric uncertainty can be characterized in the frequency-domain by tabulated augmented multiport S or Y-parameter responses based on a stochastic Galerkins formulation of the network equations. In this work, the Loewner Matrix approach is utilized to generate a compact SPICE-compatible macromodel of the stochastic distributed network from the tabulated frequency-domain data for transient analysis. The key attribute of this work is that the superior scaling of the computational complexity of the Loewner Matrix approach with respect to the augmented number of network ports allows for a more efficient generation of the macromodel than the classical Vector Fitting approach. This leads to faster transient analysis for problems involving large random spaces. The advantage of the proposed approach is validated using a numerical example.\",\"PeriodicalId\":279929,\"journal\":{\"name\":\"2014 IEEE International Symposium on Electromagnetic Compatibility (EMC)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Electromagnetic Compatibility (EMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEMC.2014.6898971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Electromagnetic Compatibility (EMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2014.6898971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

具有嵌入式参数不确定性的分布式网络可以在频域通过基于网络方程的随机伽辽金公式的增广多端口S或y参数响应表来表征。在这项工作中,利用Loewner矩阵方法从表化的频域数据中生成一个紧凑的spice兼容的随机分布式网络宏模型,用于瞬态分析。这项工作的关键属性是,相对于网络端口数量的增加,Loewner矩阵方法的计算复杂性的优越缩放允许比经典的向量拟合方法更有效地生成宏模型。这使得涉及大型随机空间的问题的瞬态分析更快。通过数值算例验证了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient stochastic transient analysis of high-speed passive distributed networks using Loewner Matrix based macromodels
Distributed networks with embedded parametric uncertainty can be characterized in the frequency-domain by tabulated augmented multiport S or Y-parameter responses based on a stochastic Galerkins formulation of the network equations. In this work, the Loewner Matrix approach is utilized to generate a compact SPICE-compatible macromodel of the stochastic distributed network from the tabulated frequency-domain data for transient analysis. The key attribute of this work is that the superior scaling of the computational complexity of the Loewner Matrix approach with respect to the augmented number of network ports allows for a more efficient generation of the macromodel than the classical Vector Fitting approach. This leads to faster transient analysis for problems involving large random spaces. The advantage of the proposed approach is validated using a numerical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of emission source microscopy technique to EMI source localization above 5 GHz Modeling of carbon nanotube-metal contact losses in electronic devices Integrated-circuit countermeasures against information leakage through EM radiation Over-the-air performance testing of a real 4G LTE base station in a reverberation chamber A common-mode active filter in a compact package for a switching mode power supply
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1