基于数据稀疏度的人群异质定位习惯建模与定位预测

James McInerney, Jiangchuan Zheng, A. Rogers, N. Jennings
{"title":"基于数据稀疏度的人群异质定位习惯建模与定位预测","authors":"James McInerney, Jiangchuan Zheng, A. Rogers, N. Jennings","doi":"10.1145/2493432.2493437","DOIUrl":null,"url":null,"abstract":"In recent years, researchers have sought to capture the daily life location behaviour of groups of people for exploratory, inference, and predictive purposes. However, development of such approaches has been limited by the requirement of personal semantic labels for locations or social/spatial overlap between individuals in the group. To address this shortcoming, we present a Bayesian model of mobility in populations (i.e., groups without spatial or social interconnections) that is not subject to any of these requirements. The model intelligently shares temporal parameters between people, but keeps the spatial parameters specific to individuals. To illustrate the advantages of population modelling, we apply our model to the difficult problem of overcoming data sparsity in location prediction systems, using the Nokia dataset comprising 38 individuals, and find a factor of 2.4 improvement in location prediction performance against a state-of-the-art model when training on only 20 hours of observations.","PeriodicalId":262104,"journal":{"name":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Modelling heterogeneous location habits in human populations for location prediction under data sparsity\",\"authors\":\"James McInerney, Jiangchuan Zheng, A. Rogers, N. Jennings\",\"doi\":\"10.1145/2493432.2493437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, researchers have sought to capture the daily life location behaviour of groups of people for exploratory, inference, and predictive purposes. However, development of such approaches has been limited by the requirement of personal semantic labels for locations or social/spatial overlap between individuals in the group. To address this shortcoming, we present a Bayesian model of mobility in populations (i.e., groups without spatial or social interconnections) that is not subject to any of these requirements. The model intelligently shares temporal parameters between people, but keeps the spatial parameters specific to individuals. To illustrate the advantages of population modelling, we apply our model to the difficult problem of overcoming data sparsity in location prediction systems, using the Nokia dataset comprising 38 individuals, and find a factor of 2.4 improvement in location prediction performance against a state-of-the-art model when training on only 20 hours of observations.\",\"PeriodicalId\":262104,\"journal\":{\"name\":\"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2493432.2493437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2493432.2493437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

近年来,研究人员试图捕捉一群人的日常生活定位行为,用于探索、推断和预测目的。然而,这种方法的发展受到群体中个体之间位置或社会/空间重叠的个人语义标签的要求的限制。为了解决这个缺点,我们提出了一个不受这些要求约束的人口(即没有空间或社会联系的群体)流动性的贝叶斯模型。该模型智能地在人与人之间共享时间参数,但保持个体特定的空间参数。为了说明人口建模的优势,我们使用包含38个个体的诺基亚数据集,将我们的模型应用于克服位置预测系统中数据稀疏性的难题,并发现在仅进行20小时观察训练时,与最先进的模型相比,位置预测性能提高了2.4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling heterogeneous location habits in human populations for location prediction under data sparsity
In recent years, researchers have sought to capture the daily life location behaviour of groups of people for exploratory, inference, and predictive purposes. However, development of such approaches has been limited by the requirement of personal semantic labels for locations or social/spatial overlap between individuals in the group. To address this shortcoming, we present a Bayesian model of mobility in populations (i.e., groups without spatial or social interconnections) that is not subject to any of these requirements. The model intelligently shares temporal parameters between people, but keeps the spatial parameters specific to individuals. To illustrate the advantages of population modelling, we apply our model to the difficult problem of overcoming data sparsity in location prediction systems, using the Nokia dataset comprising 38 individuals, and find a factor of 2.4 improvement in location prediction performance against a state-of-the-art model when training on only 20 hours of observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Storage-aware smartphone energy savings Three case studies of UX with moving products Session details: Location-based services I CoenoFire: monitoring performance indicators of firefighters in real-world missions using smartphones Session details: Sustainability I
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1