社会化书签系统中基于聚类的标签推荐自优化

Malik Tahir Hassan, Asim Karim, F. Javed, N. Arshad
{"title":"社会化书签系统中基于聚类的标签推荐自优化","authors":"Malik Tahir Hassan, Asim Karim, F. Javed, N. Arshad","doi":"10.1109/ICMLA.2010.93","DOIUrl":null,"url":null,"abstract":"In this paper, we propose and evaluate a self-optimization strategy for a clustering-based tag recommendation system. For tag recommendation, we use an efficient discriminative clustering approach. To develop our self-optimization strategy for this tag recommendation approach, we empirically investigate when and how to update the tag recommender with minimum human intervention. We present a nonlinear optimization model whose solution yields the clustering parameters that maximize the recommendation accuracy within an administrator specified time window. Evaluation on ``BibSonomy'' data produces promising results. For example, by using our self-optimization strategy a 6\\% increase in average F1 score is achieved when the administrator allows \\emph{up to} 2\\% drop in average F1 score in the last one thousand recommendations.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Self-Optimizing a Clustering-based Tag Recommender for Social Bookmarking Systems\",\"authors\":\"Malik Tahir Hassan, Asim Karim, F. Javed, N. Arshad\",\"doi\":\"10.1109/ICMLA.2010.93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose and evaluate a self-optimization strategy for a clustering-based tag recommendation system. For tag recommendation, we use an efficient discriminative clustering approach. To develop our self-optimization strategy for this tag recommendation approach, we empirically investigate when and how to update the tag recommender with minimum human intervention. We present a nonlinear optimization model whose solution yields the clustering parameters that maximize the recommendation accuracy within an administrator specified time window. Evaluation on ``BibSonomy'' data produces promising results. For example, by using our self-optimization strategy a 6\\\\% increase in average F1 score is achieved when the administrator allows \\\\emph{up to} 2\\\\% drop in average F1 score in the last one thousand recommendations.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们提出并评估了一个基于聚类的标签推荐系统的自优化策略。对于标签推荐,我们使用了一种高效的判别聚类方法。为了开发这种标签推荐方法的自优化策略,我们实证研究了何时以及如何以最小的人为干预更新标签推荐器。我们提出了一个非线性优化模型,该模型的解产生了在管理员指定的时间窗口内最大化推荐精度的聚类参数。对“BibSonomy”数据的评估产生了令人鼓舞的结果。例如,通过使用我们的自我优化策略,当管理员允许\emph{直到}在最后1000个推荐中平均F1分数下降2%时,平均F1分数增加了6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-Optimizing a Clustering-based Tag Recommender for Social Bookmarking Systems
In this paper, we propose and evaluate a self-optimization strategy for a clustering-based tag recommendation system. For tag recommendation, we use an efficient discriminative clustering approach. To develop our self-optimization strategy for this tag recommendation approach, we empirically investigate when and how to update the tag recommender with minimum human intervention. We present a nonlinear optimization model whose solution yields the clustering parameters that maximize the recommendation accuracy within an administrator specified time window. Evaluation on ``BibSonomy'' data produces promising results. For example, by using our self-optimization strategy a 6\% increase in average F1 score is achieved when the administrator allows \emph{up to} 2\% drop in average F1 score in the last one thousand recommendations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Analysis of DNA Microarray Data through the Use of Feature Selection Techniques Learning from Multiple Related Data Streams with Asynchronous Flowing Speeds Bayesian Inferences and Forecasting in Spatial Time Series Models A Framework for Comprehensive Electronic QA in Radiation Therapy Model-Based Co-clustering for Continuous Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1