智能天线试验台样机设计

R. Kawitkar, R. Shevgaonkar
{"title":"智能天线试验台样机设计","authors":"R. Kawitkar, R. Shevgaonkar","doi":"10.1109/ISAPE.2003.1276687","DOIUrl":null,"url":null,"abstract":"The use of wireless, mobile, a personal communications service is expanding rapidly. Market projections indicate that within ten years approximately 50% of the total teletraffic (including voice, FAX and multimedia data) is handled via mobile communication networks. Adaptive or \"smart\" antenna arrays can further increase channel capacity through spatial division. Adaptive antennas an also track mobile users, improving both signal range and quality. For these reasons, smart antenna systems have attracted widespread interest in the telecommunications industry for applications to third generation wireless systems. The problems in 3G systems can be effectively tackled by using smart antennas. This paper aims to design and develop an advanced antennas testbed to serve as a common reference for testing adaptive antenna arrays and signal combining algorithms, as well as complete systems. The goal of this paper is to develop low complexity smart antenna structures for 3G systems. The emphasis is laid on ease of implementation in a multichannel/multi-user environment. A smart antenna test bed is developed, and various state-of-the-art DSP structures and algorithms are investigated. Some of the benefits that can be achieved by using SAS (smart antenna system) include lower mobile terminal power consumption, range extension, ISI reduction, higher data rate support, and ease of integration into the existing base station system. In terms of economic benefits, adaptive antenna systems employed at base station, though increases the per base station cost, can increase coverage area of each cell site, thereby reducing the total system cost dramatically - often by more than 50% without compromising the system performance. The testbed can be employed to illustrate enhancement of system capacity and service quality in wireless communications applications.","PeriodicalId":179885,"journal":{"name":"6th International SYmposium on Antennas, Propagation and EM Theory, 2003. Proceedings. 2003","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Design of smart antenna testbed prototype\",\"authors\":\"R. Kawitkar, R. Shevgaonkar\",\"doi\":\"10.1109/ISAPE.2003.1276687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of wireless, mobile, a personal communications service is expanding rapidly. Market projections indicate that within ten years approximately 50% of the total teletraffic (including voice, FAX and multimedia data) is handled via mobile communication networks. Adaptive or \\\"smart\\\" antenna arrays can further increase channel capacity through spatial division. Adaptive antennas an also track mobile users, improving both signal range and quality. For these reasons, smart antenna systems have attracted widespread interest in the telecommunications industry for applications to third generation wireless systems. The problems in 3G systems can be effectively tackled by using smart antennas. This paper aims to design and develop an advanced antennas testbed to serve as a common reference for testing adaptive antenna arrays and signal combining algorithms, as well as complete systems. The goal of this paper is to develop low complexity smart antenna structures for 3G systems. The emphasis is laid on ease of implementation in a multichannel/multi-user environment. A smart antenna test bed is developed, and various state-of-the-art DSP structures and algorithms are investigated. Some of the benefits that can be achieved by using SAS (smart antenna system) include lower mobile terminal power consumption, range extension, ISI reduction, higher data rate support, and ease of integration into the existing base station system. In terms of economic benefits, adaptive antenna systems employed at base station, though increases the per base station cost, can increase coverage area of each cell site, thereby reducing the total system cost dramatically - often by more than 50% without compromising the system performance. The testbed can be employed to illustrate enhancement of system capacity and service quality in wireless communications applications.\",\"PeriodicalId\":179885,\"journal\":{\"name\":\"6th International SYmposium on Antennas, Propagation and EM Theory, 2003. Proceedings. 2003\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"6th International SYmposium on Antennas, Propagation and EM Theory, 2003. Proceedings. 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAPE.2003.1276687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th International SYmposium on Antennas, Propagation and EM Theory, 2003. Proceedings. 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAPE.2003.1276687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

无线、移动、个人通信服务的使用正在迅速扩大。市场预测表明,在十年内,大约50%的总电话流量(包括语音、传真和多媒体数据)是通过移动通信网络处理的。自适应或“智能”天线阵列可以通过空间划分进一步增加信道容量。自适应天线还可以跟踪移动用户,提高信号范围和质量。由于这些原因,智能天线系统已经引起了广泛的兴趣,在电信行业应用于第三代无线系统。使用智能天线可以有效地解决3G系统中的问题。本文旨在设计和开发一个先进的天线试验台,为自适应天线阵列和信号组合算法以及完整系统的测试提供通用参考。本文的目标是为3G系统开发低复杂度的智能天线结构。重点是在多通道/多用户环境中易于实现。开发了智能天线试验台,研究了各种DSP结构和算法。使用SAS(智能天线系统)可以实现的一些好处包括更低的移动终端功耗、范围扩展、ISI减少、更高的数据速率支持以及易于集成到现有基站系统中。在经济效益方面,基站采用的自适应天线系统虽然增加了每个基站的成本,但可以增加每个小区站点的覆盖面积,从而显著降低系统总成本——通常在不影响系统性能的情况下降低50%以上。该试验台可用于演示无线通信应用中系统容量和服务质量的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of smart antenna testbed prototype
The use of wireless, mobile, a personal communications service is expanding rapidly. Market projections indicate that within ten years approximately 50% of the total teletraffic (including voice, FAX and multimedia data) is handled via mobile communication networks. Adaptive or "smart" antenna arrays can further increase channel capacity through spatial division. Adaptive antennas an also track mobile users, improving both signal range and quality. For these reasons, smart antenna systems have attracted widespread interest in the telecommunications industry for applications to third generation wireless systems. The problems in 3G systems can be effectively tackled by using smart antennas. This paper aims to design and develop an advanced antennas testbed to serve as a common reference for testing adaptive antenna arrays and signal combining algorithms, as well as complete systems. The goal of this paper is to develop low complexity smart antenna structures for 3G systems. The emphasis is laid on ease of implementation in a multichannel/multi-user environment. A smart antenna test bed is developed, and various state-of-the-art DSP structures and algorithms are investigated. Some of the benefits that can be achieved by using SAS (smart antenna system) include lower mobile terminal power consumption, range extension, ISI reduction, higher data rate support, and ease of integration into the existing base station system. In terms of economic benefits, adaptive antenna systems employed at base station, though increases the per base station cost, can increase coverage area of each cell site, thereby reducing the total system cost dramatically - often by more than 50% without compromising the system performance. The testbed can be employed to illustrate enhancement of system capacity and service quality in wireless communications applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of smart antenna testbed prototype Tapered slot antenna array with parallel plate waveguides Numerical solution on coupling of UWB pulse into a rectangular cavity through slots Cylindrical periodic structures of metallic wires Applications of G-E closed-form Green's functions for modelling substrate based antennas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1