{"title":"小鼠胚胎中致死性Ay基因的作用位点。","authors":"Y Saijoh, T Takeuchi","doi":"10.1266/jjg.67.357","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the lethal effect of Ay gene in embryos at the preimplantation stage in vitro. First, the development until the blastocyst stage and the division of individual cells from 8-cell stage embryos were examined. No difference in development was detected between embryos from the experimental cross (Ay/a x Ay/a) and those from the control cross (a/a x a/a). Therefore, it seems that the abnormality of the Ay/Ay embryo does not appear until blastocyst formation in vitro. We subsequently examined the hatching from zona pellucida of the blastocysts. The hatching ratio of the embryos from the experimental cross was significantly lower than that of the control crosses (Ay/a x a/a, a/a x a/a: p < 0.05). Our observation indicates that deficiency of the Ay/Ay embryo can be detected in vitro at hatching. In order to elucidate the mechanism of the gene action of the Ay, we attempted to rescue the lethal embryos from decreased hatching ratio in vitro. When dbcAMP at the concentration of 1 mM was added to the culture medium, the hatching ratio of blastocysts from the experimental cross increased until the level of those from the control crosses. Since this result indicates that the cAMP content in Ay homozygote seemed to be lower than those in a/a and Ay/a, the cAMP content in individual blastocyst was quantified. It is found that Ay homozygosity was associated with lower level of cAMP. When adenylate cyclase was activated by forskolin and cholera toxin, the hatching ratio was increased. These results seem to suggest that Ay homozygote embryos possess a defect in signal transduction system mediated by adenylate cyclase during hatching.</p>","PeriodicalId":13120,"journal":{"name":"Idengaku zasshi","volume":"67 5","pages":"357-70"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1266/jjg.67.357","citationCount":"0","resultStr":"{\"title\":\"Action site of the lethal Ay gene in the mouse embryo.\",\"authors\":\"Y Saijoh, T Takeuchi\",\"doi\":\"10.1266/jjg.67.357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigated the lethal effect of Ay gene in embryos at the preimplantation stage in vitro. First, the development until the blastocyst stage and the division of individual cells from 8-cell stage embryos were examined. No difference in development was detected between embryos from the experimental cross (Ay/a x Ay/a) and those from the control cross (a/a x a/a). Therefore, it seems that the abnormality of the Ay/Ay embryo does not appear until blastocyst formation in vitro. We subsequently examined the hatching from zona pellucida of the blastocysts. The hatching ratio of the embryos from the experimental cross was significantly lower than that of the control crosses (Ay/a x a/a, a/a x a/a: p < 0.05). Our observation indicates that deficiency of the Ay/Ay embryo can be detected in vitro at hatching. In order to elucidate the mechanism of the gene action of the Ay, we attempted to rescue the lethal embryos from decreased hatching ratio in vitro. When dbcAMP at the concentration of 1 mM was added to the culture medium, the hatching ratio of blastocysts from the experimental cross increased until the level of those from the control crosses. Since this result indicates that the cAMP content in Ay homozygote seemed to be lower than those in a/a and Ay/a, the cAMP content in individual blastocyst was quantified. It is found that Ay homozygosity was associated with lower level of cAMP. When adenylate cyclase was activated by forskolin and cholera toxin, the hatching ratio was increased. These results seem to suggest that Ay homozygote embryos possess a defect in signal transduction system mediated by adenylate cyclase during hatching.</p>\",\"PeriodicalId\":13120,\"journal\":{\"name\":\"Idengaku zasshi\",\"volume\":\"67 5\",\"pages\":\"357-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1266/jjg.67.357\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Idengaku zasshi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1266/jjg.67.357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Idengaku zasshi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1266/jjg.67.357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Action site of the lethal Ay gene in the mouse embryo.
We investigated the lethal effect of Ay gene in embryos at the preimplantation stage in vitro. First, the development until the blastocyst stage and the division of individual cells from 8-cell stage embryos were examined. No difference in development was detected between embryos from the experimental cross (Ay/a x Ay/a) and those from the control cross (a/a x a/a). Therefore, it seems that the abnormality of the Ay/Ay embryo does not appear until blastocyst formation in vitro. We subsequently examined the hatching from zona pellucida of the blastocysts. The hatching ratio of the embryos from the experimental cross was significantly lower than that of the control crosses (Ay/a x a/a, a/a x a/a: p < 0.05). Our observation indicates that deficiency of the Ay/Ay embryo can be detected in vitro at hatching. In order to elucidate the mechanism of the gene action of the Ay, we attempted to rescue the lethal embryos from decreased hatching ratio in vitro. When dbcAMP at the concentration of 1 mM was added to the culture medium, the hatching ratio of blastocysts from the experimental cross increased until the level of those from the control crosses. Since this result indicates that the cAMP content in Ay homozygote seemed to be lower than those in a/a and Ay/a, the cAMP content in individual blastocyst was quantified. It is found that Ay homozygosity was associated with lower level of cAMP. When adenylate cyclase was activated by forskolin and cholera toxin, the hatching ratio was increased. These results seem to suggest that Ay homozygote embryos possess a defect in signal transduction system mediated by adenylate cyclase during hatching.