基于数据源选择的近似KNN查询处理

Liang Zhu, Peng Li, Yonggang Wei, Xin Song, Yu Wang
{"title":"基于数据源选择的近似KNN查询处理","authors":"Liang Zhu, Peng Li, Yonggang Wei, Xin Song, Yu Wang","doi":"10.1109/ICAA53760.2021.00121","DOIUrl":null,"url":null,"abstract":"A KNN query over a relation is to find its $K$ nearest neighbors/tuples from a dataset/relation according to a distance function. In this paper, we discuss approximate KNN query processing based on the selection of many data sources with various dimensions. We propose algorithms to construct a UBR- Tree and a Centroid Base for selecting related data sources and retrieving $K$ NN tuples. For a $K$ NN query $Q$, (1) the related data sources are selected by using the Centroid Base, (2) these data sources are sorted according to their representative tuple in the Centroid Base, (3) local $K$ NN tuples in the related data sources are retrieved, and (4) a heap structure is used to merge the local $K$ NN tuples to form global $K$ NN tuples of $Q$. Extensive experiments over low-dimensional and high-dimensional datasets are conducted to demonstrate the performances of our proposed approaches.","PeriodicalId":121879,"journal":{"name":"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Processing Approximate KNN Query Based on Data Source Selection\",\"authors\":\"Liang Zhu, Peng Li, Yonggang Wei, Xin Song, Yu Wang\",\"doi\":\"10.1109/ICAA53760.2021.00121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A KNN query over a relation is to find its $K$ nearest neighbors/tuples from a dataset/relation according to a distance function. In this paper, we discuss approximate KNN query processing based on the selection of many data sources with various dimensions. We propose algorithms to construct a UBR- Tree and a Centroid Base for selecting related data sources and retrieving $K$ NN tuples. For a $K$ NN query $Q$, (1) the related data sources are selected by using the Centroid Base, (2) these data sources are sorted according to their representative tuple in the Centroid Base, (3) local $K$ NN tuples in the related data sources are retrieved, and (4) a heap structure is used to merge the local $K$ NN tuples to form global $K$ NN tuples of $Q$. Extensive experiments over low-dimensional and high-dimensional datasets are conducted to demonstrate the performances of our proposed approaches.\",\"PeriodicalId\":121879,\"journal\":{\"name\":\"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAA53760.2021.00121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAA53760.2021.00121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对一个关系的KNN查询是根据距离函数从一个数据集/关系中找到它的$K$近邻/元组。在本文中,我们讨论了基于选择多个不同维度的数据源的近似KNN查询处理。我们提出了构建UBR- Tree和质心库的算法,用于选择相关数据源和检索$K$ NN元组。对于$K$ NN查询$Q$,(1)使用质心库选择相关数据源,(2)根据质心库中的代表性元组对这些数据源进行排序,(3)检索相关数据源中的局部$K$ NN元组,(4)使用堆结构将局部$K$ NN元组合并形成$Q$的全局$K$ NN元组。在低维和高维数据集上进行了广泛的实验,以证明我们提出的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Processing Approximate KNN Query Based on Data Source Selection
A KNN query over a relation is to find its $K$ nearest neighbors/tuples from a dataset/relation according to a distance function. In this paper, we discuss approximate KNN query processing based on the selection of many data sources with various dimensions. We propose algorithms to construct a UBR- Tree and a Centroid Base for selecting related data sources and retrieving $K$ NN tuples. For a $K$ NN query $Q$, (1) the related data sources are selected by using the Centroid Base, (2) these data sources are sorted according to their representative tuple in the Centroid Base, (3) local $K$ NN tuples in the related data sources are retrieved, and (4) a heap structure is used to merge the local $K$ NN tuples to form global $K$ NN tuples of $Q$. Extensive experiments over low-dimensional and high-dimensional datasets are conducted to demonstrate the performances of our proposed approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discussion on Big Data Network Public Opinion in Colleges and Universities Robot Path Planning Based on Fusion Improved Ant Colony Algorithm Intra-and-inter Sentence Attention Model for Enhanced Question Answering System Mobile Application GUI Similarity Comparison Based on Perceptual Hash for Automated Robot Testing Discuss on Functions and Design of Virtual Travel Communities for Seniors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1