{"title":"香豆的抗氧化和抗菌活性。(熊猫科)支柱根及其在新型细菌纤维素(Nata)酶解发酵中的应用","authors":"Thanasak Lomthong, Manida Chorum, Srisuda Samaimai, Panarat Thongpoem","doi":"10.7324/jabb.2022.100420","DOIUrl":null,"url":null,"abstract":"Pandanus amaryllifolius Roxb. (Pandanaceae) prop root was investigated for biological activities, i.e. antioxidant (DPPH radical scavenging assay) and antibacterial activity against Staphylococcus aureus DMST 2933 and Escherichia coli DMST 4212. The results showed that a crude extract of pandan prop roots exhibited antioxidant activity with IC 50 of 230.24 ± 10.69 µg/ml, and it had a total phenolic content of 24.75 ± 0.74 mg GAE/g of TPC content and inhibited the growth of S. aureus DMST 2933 with 9.75 ± 0.35 mm of inhibition zone diameter. The prop root powder was used to develop a novel bacterial cellulose (BC) production using enzymatic hydrolysis. The maximum total soluble solids content at 2.67 ± 0.29 Brix was found when using prop root powder at 100 g/l with 4.0% (v/v) of the commercial enzyme (iKnowZyme® cellulase) after incubated at 50°C, pH 5.0 for 24 h. The hydrolysis pandan prop root was fermented at room temperature for nine days with Komagataeibacter xylinus AGR 60, yielded 13.5 ± 0.50 mm of thickness with 7.90 ± 0.10 g of dry weight. Scanning electron microscope and Fourier-transform infrared spectroscopy were used to characterize the physical and chemical structure of the BC produced from pandan prop root, revealing that pandan prop root has the potential for a novel BC production with bioactivities of antioxidant and antibacterial properties.","PeriodicalId":423079,"journal":{"name":"Journal of Applied Biology & Biotechnology","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antioxidant and antibacterial activities of Pandanus amaryllifolius Roxb. (Pandanaceae) prop roots and its application for a novel bacterial cellulose (Nata) fermentation by enzymatic hydrolysis\",\"authors\":\"Thanasak Lomthong, Manida Chorum, Srisuda Samaimai, Panarat Thongpoem\",\"doi\":\"10.7324/jabb.2022.100420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pandanus amaryllifolius Roxb. (Pandanaceae) prop root was investigated for biological activities, i.e. antioxidant (DPPH radical scavenging assay) and antibacterial activity against Staphylococcus aureus DMST 2933 and Escherichia coli DMST 4212. The results showed that a crude extract of pandan prop roots exhibited antioxidant activity with IC 50 of 230.24 ± 10.69 µg/ml, and it had a total phenolic content of 24.75 ± 0.74 mg GAE/g of TPC content and inhibited the growth of S. aureus DMST 2933 with 9.75 ± 0.35 mm of inhibition zone diameter. The prop root powder was used to develop a novel bacterial cellulose (BC) production using enzymatic hydrolysis. The maximum total soluble solids content at 2.67 ± 0.29 Brix was found when using prop root powder at 100 g/l with 4.0% (v/v) of the commercial enzyme (iKnowZyme® cellulase) after incubated at 50°C, pH 5.0 for 24 h. The hydrolysis pandan prop root was fermented at room temperature for nine days with Komagataeibacter xylinus AGR 60, yielded 13.5 ± 0.50 mm of thickness with 7.90 ± 0.10 g of dry weight. Scanning electron microscope and Fourier-transform infrared spectroscopy were used to characterize the physical and chemical structure of the BC produced from pandan prop root, revealing that pandan prop root has the potential for a novel BC production with bioactivities of antioxidant and antibacterial properties.\",\"PeriodicalId\":423079,\"journal\":{\"name\":\"Journal of Applied Biology & Biotechnology\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biology & Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7324/jabb.2022.100420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biology & Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7324/jabb.2022.100420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Antioxidant and antibacterial activities of Pandanus amaryllifolius Roxb. (Pandanaceae) prop roots and its application for a novel bacterial cellulose (Nata) fermentation by enzymatic hydrolysis
Pandanus amaryllifolius Roxb. (Pandanaceae) prop root was investigated for biological activities, i.e. antioxidant (DPPH radical scavenging assay) and antibacterial activity against Staphylococcus aureus DMST 2933 and Escherichia coli DMST 4212. The results showed that a crude extract of pandan prop roots exhibited antioxidant activity with IC 50 of 230.24 ± 10.69 µg/ml, and it had a total phenolic content of 24.75 ± 0.74 mg GAE/g of TPC content and inhibited the growth of S. aureus DMST 2933 with 9.75 ± 0.35 mm of inhibition zone diameter. The prop root powder was used to develop a novel bacterial cellulose (BC) production using enzymatic hydrolysis. The maximum total soluble solids content at 2.67 ± 0.29 Brix was found when using prop root powder at 100 g/l with 4.0% (v/v) of the commercial enzyme (iKnowZyme® cellulase) after incubated at 50°C, pH 5.0 for 24 h. The hydrolysis pandan prop root was fermented at room temperature for nine days with Komagataeibacter xylinus AGR 60, yielded 13.5 ± 0.50 mm of thickness with 7.90 ± 0.10 g of dry weight. Scanning electron microscope and Fourier-transform infrared spectroscopy were used to characterize the physical and chemical structure of the BC produced from pandan prop root, revealing that pandan prop root has the potential for a novel BC production with bioactivities of antioxidant and antibacterial properties.