基于稀疏自编码的智能电网数据快速清洗方法

Peiyao Xu, Jianyong Wang, Fengtao Huang, Chao Lin, Chennan Zhou
{"title":"基于稀疏自编码的智能电网数据快速清洗方法","authors":"Peiyao Xu, Jianyong Wang, Fengtao Huang, Chao Lin, Chennan Zhou","doi":"10.1117/12.2671323","DOIUrl":null,"url":null,"abstract":"At present, the data cleaning method based on time series realizes the data cleaning by classifying the data in the time series. Due to the lack of dimensionality reduction, the cleaning efficiency is low. For this reason, this paper proposes a method for rapid cleaning of smart grid data based on sparse self-coding. In this paper, the encoder neural network is constructed to reduce the dimension of the data, and Logsf algorithm is used to obtain the optimal weight of the data, obtain the main characteristics of the data, and achieve clustering cleaning of the data. In the experiment, the cleaning efficiency of the proposed method was verified. The experimental results show that the method proposed in this paper has a short time delay and high cleaning efficiency for smart grid data cleaning.","PeriodicalId":227528,"journal":{"name":"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast cleaning method for smart grid data based on sparse self-coding\",\"authors\":\"Peiyao Xu, Jianyong Wang, Fengtao Huang, Chao Lin, Chennan Zhou\",\"doi\":\"10.1117/12.2671323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, the data cleaning method based on time series realizes the data cleaning by classifying the data in the time series. Due to the lack of dimensionality reduction, the cleaning efficiency is low. For this reason, this paper proposes a method for rapid cleaning of smart grid data based on sparse self-coding. In this paper, the encoder neural network is constructed to reduce the dimension of the data, and Logsf algorithm is used to obtain the optimal weight of the data, obtain the main characteristics of the data, and achieve clustering cleaning of the data. In the experiment, the cleaning efficiency of the proposed method was verified. The experimental results show that the method proposed in this paper has a short time delay and high cleaning efficiency for smart grid data cleaning.\",\"PeriodicalId\":227528,\"journal\":{\"name\":\"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2671323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2671323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,基于时间序列的数据清洗方法是通过对时间序列中的数据进行分类来实现数据清洗。由于没有降维,清洗效率较低。为此,本文提出了一种基于稀疏自编码的智能电网数据快速清洗方法。本文通过构建编码器神经网络对数据进行降维,利用Logsf算法获得数据的最优权值,获取数据的主要特征,实现对数据的聚类清洗。实验验证了该方法的清洗效果。实验结果表明,本文提出的方法对智能电网数据清洗具有时间延迟短、清洗效率高的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast cleaning method for smart grid data based on sparse self-coding
At present, the data cleaning method based on time series realizes the data cleaning by classifying the data in the time series. Due to the lack of dimensionality reduction, the cleaning efficiency is low. For this reason, this paper proposes a method for rapid cleaning of smart grid data based on sparse self-coding. In this paper, the encoder neural network is constructed to reduce the dimension of the data, and Logsf algorithm is used to obtain the optimal weight of the data, obtain the main characteristics of the data, and achieve clustering cleaning of the data. In the experiment, the cleaning efficiency of the proposed method was verified. The experimental results show that the method proposed in this paper has a short time delay and high cleaning efficiency for smart grid data cleaning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hippocampus MRI diagnosis based on deep learning in application of preliminary screening of Alzheimer’s disease Global critic and local actor for campaign-tactic combat management in the joint operation simulation software Intelligent monitoring system of oil tank liquid level based on infrared thermal imaging Chinese named entity recognition incorporating syntactic information Object tracking based on foreground adaptive bounding box and motion state redetection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1