基于群论的人体乳房模型的高效微波成像

Hardik N. Patel, Deepak Kumar
{"title":"基于群论的人体乳房模型的高效微波成像","authors":"Hardik N. Patel, Deepak Kumar","doi":"10.1109/IMARC.2015.7411383","DOIUrl":null,"url":null,"abstract":"Breast cancer detection depends on accuracy of complex permittivity profile reconstruction in breasts. In microwave imaging of breasts, large size matrix is inverted to reconstruct complex permittivity profile of breast models. In this paper, computation time of matrix inversion is reduced by exploiting symmetry present in breast models. Group theory is a powerful tool to exploit symmetry which also provides better results in the presence of noise.","PeriodicalId":307742,"journal":{"name":"2015 IEEE MTT-S International Microwave and RF Conference (IMaRC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Computationally efficient microwave imaging of human breast model using group theory\",\"authors\":\"Hardik N. Patel, Deepak Kumar\",\"doi\":\"10.1109/IMARC.2015.7411383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast cancer detection depends on accuracy of complex permittivity profile reconstruction in breasts. In microwave imaging of breasts, large size matrix is inverted to reconstruct complex permittivity profile of breast models. In this paper, computation time of matrix inversion is reduced by exploiting symmetry present in breast models. Group theory is a powerful tool to exploit symmetry which also provides better results in the presence of noise.\",\"PeriodicalId\":307742,\"journal\":{\"name\":\"2015 IEEE MTT-S International Microwave and RF Conference (IMaRC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE MTT-S International Microwave and RF Conference (IMaRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMARC.2015.7411383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE MTT-S International Microwave and RF Conference (IMaRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMARC.2015.7411383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

乳腺癌的检测依赖于乳房复介电常数谱重建的准确性。在乳房微波成像中,利用大尺寸矩阵进行反演来重建乳房模型的复杂介电常数分布。本文利用乳房模型的对称性,减少了矩阵反演的计算时间。群论是利用对称性的有力工具,它在存在噪声的情况下也能提供更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computationally efficient microwave imaging of human breast model using group theory
Breast cancer detection depends on accuracy of complex permittivity profile reconstruction in breasts. In microwave imaging of breasts, large size matrix is inverted to reconstruct complex permittivity profile of breast models. In this paper, computation time of matrix inversion is reduced by exploiting symmetry present in breast models. Group theory is a powerful tool to exploit symmetry which also provides better results in the presence of noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Device characterization and modeling for Terahertz CMOS design Double-layered siw filter with enhanced electric coupling structure using three short-ended striplines Phase based sector resolution in angle of arrival (AoA) computation using a five element circular array Compact UWB MIMO antenna with WiMAX and WLAN rejection GaN based L-band high power and high efficiency pulsed transmitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1