两种检测和纠正控制流错误的有效软件技术

H. Zarandi, M. Maghsoudloo, N. Khoshavi
{"title":"两种检测和纠正控制流错误的有效软件技术","authors":"H. Zarandi, M. Maghsoudloo, N. Khoshavi","doi":"10.1109/PRDC.2010.10","DOIUrl":null,"url":null,"abstract":"This paper proposes two efficient software techniques, Control-flow and Data Errors Correction using Data-flow Graph Consideration (CDCC) and Miniaturized Check-Pointing (MCP), to detect and correct control-flow errors. These techniques have been implemented based on addition of redundant codes in a given program. The creativity applied in the methods for online detection and correction of the control-flow errors is using data-flow graph alongside of using control-flow graph. These techniques can detect most of the control-flow errors in the program firstly, and next can correct them, automatically. Therefore, both errors in the control-flow and program data which is caused by control-flow errors can be corrected, efficiently. In order to evaluate the proposed techniques, a post compiler is used, so that the techniques can be applied to every 80X86 binaries, transparently. Three benchmarks quick sort, matrix multiplication and linked list are used, and a total of 5000 transient faults are injected on several executable points in each program. The experimental results demonstrate that at least 93% and 89% of the control-flow errors can be detected and corrected without any data error generation by the CDCC and MCP, respectively. Moreover, the strength of these techniques is significant reduction in the performance and memory overheads in compare to traditional methods, for as much as remarkable correction abilities.","PeriodicalId":382974,"journal":{"name":"2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Two Efficient Software Techniques to Detect and Correct Control-Flow Errors\",\"authors\":\"H. Zarandi, M. Maghsoudloo, N. Khoshavi\",\"doi\":\"10.1109/PRDC.2010.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes two efficient software techniques, Control-flow and Data Errors Correction using Data-flow Graph Consideration (CDCC) and Miniaturized Check-Pointing (MCP), to detect and correct control-flow errors. These techniques have been implemented based on addition of redundant codes in a given program. The creativity applied in the methods for online detection and correction of the control-flow errors is using data-flow graph alongside of using control-flow graph. These techniques can detect most of the control-flow errors in the program firstly, and next can correct them, automatically. Therefore, both errors in the control-flow and program data which is caused by control-flow errors can be corrected, efficiently. In order to evaluate the proposed techniques, a post compiler is used, so that the techniques can be applied to every 80X86 binaries, transparently. Three benchmarks quick sort, matrix multiplication and linked list are used, and a total of 5000 transient faults are injected on several executable points in each program. The experimental results demonstrate that at least 93% and 89% of the control-flow errors can be detected and corrected without any data error generation by the CDCC and MCP, respectively. Moreover, the strength of these techniques is significant reduction in the performance and memory overheads in compare to traditional methods, for as much as remarkable correction abilities.\",\"PeriodicalId\":382974,\"journal\":{\"name\":\"2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRDC.2010.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRDC.2010.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文提出了两种有效的软件技术,即利用数据流图考虑(CDCC)和小型化检查点(MCP)来检测和纠正控制流错误的控制流和数据纠错技术。这些技术是基于在给定程序中添加冗余代码来实现的。控制流误差在线检测与校正方法的创新之处在于除控制流图外,还采用了数据流图。这些技术可以首先检测出程序中的大部分控制流错误,然后自动纠正这些错误。因此,可以有效地纠正由控制流错误引起的控制流和程序数据中的错误。为了评估所建议的技术,使用了post编译器,以便这些技术可以透明地应用于每个80X86二进制文件。采用快速排序、矩阵乘法和链表三个基准,在每个程序的几个可执行点上注入了5000个瞬态故障。实验结果表明,CDCC和MCP分别可以在不产生任何数据误差的情况下检测和校正至少93%和89%的控制流误差。此外,与传统方法相比,这些技术的优势在于显著降低了性能和内存开销,并且具有出色的校正能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two Efficient Software Techniques to Detect and Correct Control-Flow Errors
This paper proposes two efficient software techniques, Control-flow and Data Errors Correction using Data-flow Graph Consideration (CDCC) and Miniaturized Check-Pointing (MCP), to detect and correct control-flow errors. These techniques have been implemented based on addition of redundant codes in a given program. The creativity applied in the methods for online detection and correction of the control-flow errors is using data-flow graph alongside of using control-flow graph. These techniques can detect most of the control-flow errors in the program firstly, and next can correct them, automatically. Therefore, both errors in the control-flow and program data which is caused by control-flow errors can be corrected, efficiently. In order to evaluate the proposed techniques, a post compiler is used, so that the techniques can be applied to every 80X86 binaries, transparently. Three benchmarks quick sort, matrix multiplication and linked list are used, and a total of 5000 transient faults are injected on several executable points in each program. The experimental results demonstrate that at least 93% and 89% of the control-flow errors can be detected and corrected without any data error generation by the CDCC and MCP, respectively. Moreover, the strength of these techniques is significant reduction in the performance and memory overheads in compare to traditional methods, for as much as remarkable correction abilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Safe Measurement-Based Worst-Case Execution Time Estimation Using Automatic Test-Data Generation An Improved Knowledge Connectivity Condition for Fault-Tolerant Consensus with Unknown Participants On the Reliability of Cascaded TMR Systems A Learning-Based Approach to Secure Web Services from SQL/XPath Injection Attacks Address Remapping for Static NUCA in NoC-Based Degradable Chip-Multiprocessors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1