M. Mao, Shi-Ting Weng, Fuyang Liu, Liuchen Chang, M. Ding, Hongbin Wu
{"title":"在并网三相SVPWM电流源逆变器中提出了一种新的PRD控制方法","authors":"M. Mao, Shi-Ting Weng, Fuyang Liu, Liuchen Chang, M. Ding, Hongbin Wu","doi":"10.1109/PEDG.2012.6254047","DOIUrl":null,"url":null,"abstract":"A novel control method based on the proportional resonant differential (PRD) control is proposed for the grid-connected current source inverter (CSI) used in the direct drive permanent magnet synchronous wind generation system. By the optimal design of the parameters of the PRD controller in two-phase stationary frame, the CSI system can realize zero steady-state error control and effectively damp the resonance caused by its output LC filter just by feeding back the grid-connected current. This not only greatly simplifies the controller design but also enhances the stability of the system. Simulation results show grid-connected CSI with this method has fast dynamic response and good steady-state performances.","PeriodicalId":146438,"journal":{"name":"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A novel PRD control method damping resonance in grid-connected three-phase SVPWM current source inverter\",\"authors\":\"M. Mao, Shi-Ting Weng, Fuyang Liu, Liuchen Chang, M. Ding, Hongbin Wu\",\"doi\":\"10.1109/PEDG.2012.6254047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel control method based on the proportional resonant differential (PRD) control is proposed for the grid-connected current source inverter (CSI) used in the direct drive permanent magnet synchronous wind generation system. By the optimal design of the parameters of the PRD controller in two-phase stationary frame, the CSI system can realize zero steady-state error control and effectively damp the resonance caused by its output LC filter just by feeding back the grid-connected current. This not only greatly simplifies the controller design but also enhances the stability of the system. Simulation results show grid-connected CSI with this method has fast dynamic response and good steady-state performances.\",\"PeriodicalId\":146438,\"journal\":{\"name\":\"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDG.2012.6254047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDG.2012.6254047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel PRD control method damping resonance in grid-connected three-phase SVPWM current source inverter
A novel control method based on the proportional resonant differential (PRD) control is proposed for the grid-connected current source inverter (CSI) used in the direct drive permanent magnet synchronous wind generation system. By the optimal design of the parameters of the PRD controller in two-phase stationary frame, the CSI system can realize zero steady-state error control and effectively damp the resonance caused by its output LC filter just by feeding back the grid-connected current. This not only greatly simplifies the controller design but also enhances the stability of the system. Simulation results show grid-connected CSI with this method has fast dynamic response and good steady-state performances.