四轴飞行器控制使用机载单目摄像机丰富远程实验室设施

Fawzi Khattar, F. Dornaika, F. Luthon, B. Larroque
{"title":"四轴飞行器控制使用机载单目摄像机丰富远程实验室设施","authors":"Fawzi Khattar, F. Dornaika, F. Luthon, B. Larroque","doi":"10.1109/AQTR.2018.8402730","DOIUrl":null,"url":null,"abstract":"We present the implementation of a visual localization and control system of a low cost quadcopter for an application in a remote electronic laboratory. The issues addressed are: environment exploration in remote laboratories, autonomous visual inspection of planar objects, and autonomous homing and landing. The localization system is composed of two complementary visual approaches: (i) a visual SLAM (Simultaneous Localization And Mapping) system, and (ii) a homography-based localization system. We extend the application scenarios of the first system by allowing close range inspection of a planar electrical instrument and autonomous landing. Experiments conducted in a remote laboratory workspace are presented. They prove the performance of the proposed system in terms of real-time and robustness.","PeriodicalId":145620,"journal":{"name":"International Conference on Automation, Quality and Testing, Robotics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Quadcopter control using onboard monocular camera for enriching remote laboratory facilities\",\"authors\":\"Fawzi Khattar, F. Dornaika, F. Luthon, B. Larroque\",\"doi\":\"10.1109/AQTR.2018.8402730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the implementation of a visual localization and control system of a low cost quadcopter for an application in a remote electronic laboratory. The issues addressed are: environment exploration in remote laboratories, autonomous visual inspection of planar objects, and autonomous homing and landing. The localization system is composed of two complementary visual approaches: (i) a visual SLAM (Simultaneous Localization And Mapping) system, and (ii) a homography-based localization system. We extend the application scenarios of the first system by allowing close range inspection of a planar electrical instrument and autonomous landing. Experiments conducted in a remote laboratory workspace are presented. They prove the performance of the proposed system in terms of real-time and robustness.\",\"PeriodicalId\":145620,\"journal\":{\"name\":\"International Conference on Automation, Quality and Testing, Robotics\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Automation, Quality and Testing, Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AQTR.2018.8402730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automation, Quality and Testing, Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AQTR.2018.8402730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quadcopter control using onboard monocular camera for enriching remote laboratory facilities
We present the implementation of a visual localization and control system of a low cost quadcopter for an application in a remote electronic laboratory. The issues addressed are: environment exploration in remote laboratories, autonomous visual inspection of planar objects, and autonomous homing and landing. The localization system is composed of two complementary visual approaches: (i) a visual SLAM (Simultaneous Localization And Mapping) system, and (ii) a homography-based localization system. We extend the application scenarios of the first system by allowing close range inspection of a planar electrical instrument and autonomous landing. Experiments conducted in a remote laboratory workspace are presented. They prove the performance of the proposed system in terms of real-time and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Channel Chatbot and Robotic Process Automation Low Cost Defect Detection Using a Deep Convolutional Neural Network Sizing photovoltaic-wind smart microgrid with battery storage and grid connection A New Approach for Detection and Analysis of Lung Pleural Line Morphology Gaze Analysis and Concentration Monitoring for Children With Attention Disorder Using Eye-Tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1