基于激光图案石墨烯薄片的可调谐和可穿戴的高性能应变传感器

L. Tao, Dan-Yang Wang, H. Tian, Zhenyi Ju, Y. Liu, Yuan-Quan Chen, Qian‐Yi Xie, Haiming Zhao, Yi Yang, T. Ren
{"title":"基于激光图案石墨烯薄片的可调谐和可穿戴的高性能应变传感器","authors":"L. Tao, Dan-Yang Wang, H. Tian, Zhenyi Ju, Y. Liu, Yuan-Quan Chen, Qian‐Yi Xie, Haiming Zhao, Yi Yang, T. Ren","doi":"10.1109/IEDM.2016.7838445","DOIUrl":null,"url":null,"abstract":"Tunable and wearable strain sensors with high gauge factor (GF) and large strain range based on laser patterned graphene flakes (LPGF) are demonstrated in this paper. The performance can be adjusted by laser patterning, resulting in a preferable GF (up to 457) or strain range (over 100%), both of which are significantly higher than most of the state-of-the-art graphene strain sensors. Most importantly, the tunable strain sensors with high GF and large strain range can be fabricated simultaneously by a one-step laser patterning. These tunable strain sensors can meet the demands of monitoring both subtle and large human motions, indicating that they will have great potentials in health care, voice recognition, gesture control and many other areas.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tunable and wearable high performance strain sensors based on laser patterned graphene flakes\",\"authors\":\"L. Tao, Dan-Yang Wang, H. Tian, Zhenyi Ju, Y. Liu, Yuan-Quan Chen, Qian‐Yi Xie, Haiming Zhao, Yi Yang, T. Ren\",\"doi\":\"10.1109/IEDM.2016.7838445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tunable and wearable strain sensors with high gauge factor (GF) and large strain range based on laser patterned graphene flakes (LPGF) are demonstrated in this paper. The performance can be adjusted by laser patterning, resulting in a preferable GF (up to 457) or strain range (over 100%), both of which are significantly higher than most of the state-of-the-art graphene strain sensors. Most importantly, the tunable strain sensors with high GF and large strain range can be fabricated simultaneously by a one-step laser patterning. These tunable strain sensors can meet the demands of monitoring both subtle and large human motions, indicating that they will have great potentials in health care, voice recognition, gesture control and many other areas.\",\"PeriodicalId\":186544,\"journal\":{\"name\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2016.7838445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了一种基于激光图纹石墨烯薄片(LPGF)的高应变因子(GF)和大应变范围的可调谐可穿戴应变传感器。性能可以通过激光图像化来调整,从而产生更好的GF(高达457)或应变范围(超过100%),这两者都明显高于大多数最先进的石墨烯应变传感器。最重要的是,可调应变传感器具有高GF和大应变范围可同时制作一步激光图板。这些可调应变传感器可以满足监测细微和大的人体运动的需求,表明它们在医疗保健、语音识别、手势控制等许多领域都有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tunable and wearable high performance strain sensors based on laser patterned graphene flakes
Tunable and wearable strain sensors with high gauge factor (GF) and large strain range based on laser patterned graphene flakes (LPGF) are demonstrated in this paper. The performance can be adjusted by laser patterning, resulting in a preferable GF (up to 457) or strain range (over 100%), both of which are significantly higher than most of the state-of-the-art graphene strain sensors. Most importantly, the tunable strain sensors with high GF and large strain range can be fabricated simultaneously by a one-step laser patterning. These tunable strain sensors can meet the demands of monitoring both subtle and large human motions, indicating that they will have great potentials in health care, voice recognition, gesture control and many other areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SOI technology for quantum information processing Sustainable electronics for nano-spacecraft in deep space missions Current status and challenges of the modeling of organic photodiodes and solar cells Triboelectric energy harvester with an ultra-thin tribo-dielectric layer by initiated CVD and investigation of underlying physics in the triboelectricity 256×256, 100kfps, 61% Fill-factor time-resolved SPAD image sensor for microscopy applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1