A. Waleed, H. Medhat, Mariam Esmail, Kareem Osama, Radwa Samy, Taraggy M. Ghanim
{"title":"养鱼场鱼类疾病的自动识别","authors":"A. Waleed, H. Medhat, Mariam Esmail, Kareem Osama, Radwa Samy, Taraggy M. Ghanim","doi":"10.1109/ICCES48960.2019.9068141","DOIUrl":null,"url":null,"abstract":"Fish diseases are the major cause for increasing mortality in fish farms. Automatic identification of diseased fish at early stages is necessary step to prevent spreading disease. Fish disease diagnosis suffers from some limitations that need high level of expertise to be resolved. Recognition of fish abnormal behaviors helps in early prediction of fish diseases. Fish behavior is evaluated by analyzing fish trajectories in videos. Abnormalities may be due to environmental changes. This paper introduces a survey on what computer vision techniques propose in that field. A comprehensive comparison between different automatic recognition systems is included. Finally, our approach is proposed to automatically recognize and identify three different types of fish diseases. These diseases are Epizootic ulcerative syndrome (EUS), Ichthyophthirius (Ich) and Columnaris. Our approach shows the effect of different color spaces on the Convolutional Neural Networkk CNN final performance.","PeriodicalId":136643,"journal":{"name":"2019 14th International Conference on Computer Engineering and Systems (ICCES)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Automatic Recognition of Fish Diseases in Fish Farms\",\"authors\":\"A. Waleed, H. Medhat, Mariam Esmail, Kareem Osama, Radwa Samy, Taraggy M. Ghanim\",\"doi\":\"10.1109/ICCES48960.2019.9068141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fish diseases are the major cause for increasing mortality in fish farms. Automatic identification of diseased fish at early stages is necessary step to prevent spreading disease. Fish disease diagnosis suffers from some limitations that need high level of expertise to be resolved. Recognition of fish abnormal behaviors helps in early prediction of fish diseases. Fish behavior is evaluated by analyzing fish trajectories in videos. Abnormalities may be due to environmental changes. This paper introduces a survey on what computer vision techniques propose in that field. A comprehensive comparison between different automatic recognition systems is included. Finally, our approach is proposed to automatically recognize and identify three different types of fish diseases. These diseases are Epizootic ulcerative syndrome (EUS), Ichthyophthirius (Ich) and Columnaris. Our approach shows the effect of different color spaces on the Convolutional Neural Networkk CNN final performance.\",\"PeriodicalId\":136643,\"journal\":{\"name\":\"2019 14th International Conference on Computer Engineering and Systems (ICCES)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th International Conference on Computer Engineering and Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES48960.2019.9068141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES48960.2019.9068141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Recognition of Fish Diseases in Fish Farms
Fish diseases are the major cause for increasing mortality in fish farms. Automatic identification of diseased fish at early stages is necessary step to prevent spreading disease. Fish disease diagnosis suffers from some limitations that need high level of expertise to be resolved. Recognition of fish abnormal behaviors helps in early prediction of fish diseases. Fish behavior is evaluated by analyzing fish trajectories in videos. Abnormalities may be due to environmental changes. This paper introduces a survey on what computer vision techniques propose in that field. A comprehensive comparison between different automatic recognition systems is included. Finally, our approach is proposed to automatically recognize and identify three different types of fish diseases. These diseases are Epizootic ulcerative syndrome (EUS), Ichthyophthirius (Ich) and Columnaris. Our approach shows the effect of different color spaces on the Convolutional Neural Networkk CNN final performance.