推特语言识别相似的语言和方言没有根据的事实

Jennifer Williams, Charlie K. Dagli
{"title":"推特语言识别相似的语言和方言没有根据的事实","authors":"Jennifer Williams, Charlie K. Dagli","doi":"10.18653/v1/W17-1209","DOIUrl":null,"url":null,"abstract":"We present a new method to bootstrap filter Twitter language ID labels in our dataset for automatic language identification (LID). Our method combines geo-location, original Twitter LID labels, and Amazon Mechanical Turk to resolve missing and unreliable labels. We are the first to compare LID classification performance using the MIRA algorithm and langid.py. We show classifier performance on different versions of our dataset with high accuracy using only Twitter data, without ground truth, and very few training examples. We also show how Platt Scaling can be use to calibrate MIRA classifier output values into a probability distribution over candidate classes, making the output more intuitive. Our method allows for fine-grained distinctions between similar languages and dialects and allows us to rediscover the language composition of our Twitter dataset.","PeriodicalId":167439,"journal":{"name":"Workshop on NLP for Similar Languages, Varieties and Dialects","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Twitter Language Identification Of Similar Languages And Dialects Without Ground Truth\",\"authors\":\"Jennifer Williams, Charlie K. Dagli\",\"doi\":\"10.18653/v1/W17-1209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new method to bootstrap filter Twitter language ID labels in our dataset for automatic language identification (LID). Our method combines geo-location, original Twitter LID labels, and Amazon Mechanical Turk to resolve missing and unreliable labels. We are the first to compare LID classification performance using the MIRA algorithm and langid.py. We show classifier performance on different versions of our dataset with high accuracy using only Twitter data, without ground truth, and very few training examples. We also show how Platt Scaling can be use to calibrate MIRA classifier output values into a probability distribution over candidate classes, making the output more intuitive. Our method allows for fine-grained distinctions between similar languages and dialects and allows us to rediscover the language composition of our Twitter dataset.\",\"PeriodicalId\":167439,\"journal\":{\"name\":\"Workshop on NLP for Similar Languages, Varieties and Dialects\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on NLP for Similar Languages, Varieties and Dialects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W17-1209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on NLP for Similar Languages, Varieties and Dialects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-1209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

我们提出了一种新的方法来引导过滤Twitter语言ID标签在我们的数据集中用于自动语言识别(LID)。我们的方法结合了地理定位、原始Twitter LID标签和Amazon Mechanical Turk来解决标签缺失和不可靠的问题。我们是第一个使用MIRA算法和langid.py比较LID分类性能的人。我们在不同版本的数据集上展示了分类器的性能,仅使用Twitter数据,没有真实值,并且训练示例很少,准确率很高。我们还展示了如何使用Platt Scaling将MIRA分类器的输出值校准为候选类的概率分布,从而使输出更直观。我们的方法允许在相似的语言和方言之间进行细粒度的区分,并允许我们重新发现Twitter数据集的语言组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Twitter Language Identification Of Similar Languages And Dialects Without Ground Truth
We present a new method to bootstrap filter Twitter language ID labels in our dataset for automatic language identification (LID). Our method combines geo-location, original Twitter LID labels, and Amazon Mechanical Turk to resolve missing and unreliable labels. We are the first to compare LID classification performance using the MIRA algorithm and langid.py. We show classifier performance on different versions of our dataset with high accuracy using only Twitter data, without ground truth, and very few training examples. We also show how Platt Scaling can be use to calibrate MIRA classifier output values into a probability distribution over candidate classes, making the output more intuitive. Our method allows for fine-grained distinctions between similar languages and dialects and allows us to rediscover the language composition of our Twitter dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fine-Tuning BERT with Character-Level Noise for Zero-Shot Transfer to Dialects and Closely-Related Languages ZHAW-InIT - Social Media Geolocation at VarDial 2020 CLUZH at VarDial GDI 2017: Testing a Variety of Machine Learning Tools for the Classification of Swiss German Dialects Learning to Identify Arabic and German Dialects using Multiple Kernels Investigating Diatopic Variation in a Historical Corpus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1