一种基于被动雷达的目标自动识别鲁棒算法

L. Ehrman, A. Lanterman
{"title":"一种基于被动雷达的目标自动识别鲁棒算法","authors":"L. Ehrman, A. Lanterman","doi":"10.1109/SSST.2004.1295628","DOIUrl":null,"url":null,"abstract":"The goal of this research is to add automatic target recognition (ATR) capabilities to existing passive radar systems. We do so by comparing the radar cross section (RCS) of detected targets to the precomputed RCS of known targets in the target class. The precomputed RCS of the targets comprising the target class is modeled using a multi-step process involving programs such as the fast Illinois solver code (FISC). Advanced refractive effects prediction system (AREPS) and numerical electromagnetic code (NEC2). A Rician likelihood model compares the power profile of the detected target to the precomputed power profiles of the targets in the target class; this comparison results in target identification. Thus far, the results of simulations are encouraging, indicating that the algorithm correctly identifies aircraft with high probability at the anticipated noise level. Performance can be expected to decline as the noise power surpasses the maximum signal power.","PeriodicalId":309617,"journal":{"name":"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"A robust algorithm for automatic target recognition using passive radar\",\"authors\":\"L. Ehrman, A. Lanterman\",\"doi\":\"10.1109/SSST.2004.1295628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this research is to add automatic target recognition (ATR) capabilities to existing passive radar systems. We do so by comparing the radar cross section (RCS) of detected targets to the precomputed RCS of known targets in the target class. The precomputed RCS of the targets comprising the target class is modeled using a multi-step process involving programs such as the fast Illinois solver code (FISC). Advanced refractive effects prediction system (AREPS) and numerical electromagnetic code (NEC2). A Rician likelihood model compares the power profile of the detected target to the precomputed power profiles of the targets in the target class; this comparison results in target identification. Thus far, the results of simulations are encouraging, indicating that the algorithm correctly identifies aircraft with high probability at the anticipated noise level. Performance can be expected to decline as the noise power surpasses the maximum signal power.\",\"PeriodicalId\":309617,\"journal\":{\"name\":\"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.2004.1295628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.2004.1295628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

这项研究的目标是为现有的无源雷达系统增加自动目标识别(ATR)能力。我们通过将探测目标的雷达截面(RCS)与目标类别中已知目标的预先计算的雷达截面(RCS)进行比较来做到这一点。预先计算的包含目标类的目标的RCS使用涉及诸如快速伊利诺伊求解器代码(FISC)等程序的多步骤过程进行建模。先进折射效应预测系统(AREPS)和数值电磁编码(NEC2)。一种专家似然模型将检测到的目标的功率分布与目标类中目标的预先计算的功率分布进行比较;这种比较的结果是目标识别。到目前为止,仿真结果令人鼓舞,表明该算法在预期噪声水平下正确识别飞机的概率很高。当噪声功率超过最大信号功率时,性能可能会下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A robust algorithm for automatic target recognition using passive radar
The goal of this research is to add automatic target recognition (ATR) capabilities to existing passive radar systems. We do so by comparing the radar cross section (RCS) of detected targets to the precomputed RCS of known targets in the target class. The precomputed RCS of the targets comprising the target class is modeled using a multi-step process involving programs such as the fast Illinois solver code (FISC). Advanced refractive effects prediction system (AREPS) and numerical electromagnetic code (NEC2). A Rician likelihood model compares the power profile of the detected target to the precomputed power profiles of the targets in the target class; this comparison results in target identification. Thus far, the results of simulations are encouraging, indicating that the algorithm correctly identifies aircraft with high probability at the anticipated noise level. Performance can be expected to decline as the noise power surpasses the maximum signal power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clutter complexity analysis of hyper-spectral bands Performance analysis of UNIX user datagram protocol implementations On the complexity and accuracy of motion estimation using Lie operators Real time modeling and control of circulating fluidized bed Vehicle lateral control using a double integrator control strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1