简练:一种挖掘正负非冗余关联规则的算法

Bemarisika Parfait, Totohasina André
{"title":"简练:一种挖掘正负非冗余关联规则的算法","authors":"Bemarisika Parfait, Totohasina André","doi":"10.52458/978-93-91842-08-6-2","DOIUrl":null,"url":null,"abstract":"One challenge problem in association rules mining is the huge size of the extracted rule set many of which are uninteresting and redundant. In this paper, we propose an efficient algorithm CONCISE for generating all non-redundant positive and negative association rules. We first introduce an algorithm CMG (Closed, Maximal and Generators) for mining all frequent closed, maximal and their generators itemsets from large transaction databases. We then define four new bases representing non-redundant association rules from these frequent itemsets. We prove that these bases significantly reduce the number of extracted rules. We show the efficiency of our algorithm by computational experiments compared with existing algorithms.","PeriodicalId":247665,"journal":{"name":"SCRS Conference Proceedings on Intelligent Systems","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CONCISE: An Algorithm for Mining Positive and Negative Non-Redundant Association Rules\",\"authors\":\"Bemarisika Parfait, Totohasina André\",\"doi\":\"10.52458/978-93-91842-08-6-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One challenge problem in association rules mining is the huge size of the extracted rule set many of which are uninteresting and redundant. In this paper, we propose an efficient algorithm CONCISE for generating all non-redundant positive and negative association rules. We first introduce an algorithm CMG (Closed, Maximal and Generators) for mining all frequent closed, maximal and their generators itemsets from large transaction databases. We then define four new bases representing non-redundant association rules from these frequent itemsets. We prove that these bases significantly reduce the number of extracted rules. We show the efficiency of our algorithm by computational experiments compared with existing algorithms.\",\"PeriodicalId\":247665,\"journal\":{\"name\":\"SCRS Conference Proceedings on Intelligent Systems\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SCRS Conference Proceedings on Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52458/978-93-91842-08-6-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SCRS Conference Proceedings on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52458/978-93-91842-08-6-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关联规则挖掘中的一个挑战问题是所提取的规则集规模巨大,其中许多是无趣的和冗余的。本文提出了一种高效的生成所有非冗余正关联规则和负关联规则的简洁算法。首先介绍了一种CMG (Closed, maximum and Generators)算法,用于从大型事务数据库中挖掘所有频繁的Closed, maximum及其生成器项集。然后,我们定义了四个新的基,表示来自这些频繁项集的非冗余关联规则。我们证明了这些基显著地减少了提取规则的数量。通过计算实验与现有算法进行了比较,证明了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CONCISE: An Algorithm for Mining Positive and Negative Non-Redundant Association Rules
One challenge problem in association rules mining is the huge size of the extracted rule set many of which are uninteresting and redundant. In this paper, we propose an efficient algorithm CONCISE for generating all non-redundant positive and negative association rules. We first introduce an algorithm CMG (Closed, Maximal and Generators) for mining all frequent closed, maximal and their generators itemsets from large transaction databases. We then define four new bases representing non-redundant association rules from these frequent itemsets. We prove that these bases significantly reduce the number of extracted rules. We show the efficiency of our algorithm by computational experiments compared with existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PALS - Precision Agriculture using Local Server Automated Attendance System with Facial Recognition Using Python Performance Comparison of ML Regression Algorithms in Predicting Supermarket Sales A Review on Quality of Image during CBIR Operations and Compression Artificial Intelligence: The Future of Employment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1