凸组合量化核最小均方算法

Yunfei Zheng, Shiyuan Wang, Yali Feng, Wenjie Zhang, Qingan Yang
{"title":"凸组合量化核最小均方算法","authors":"Yunfei Zheng, Shiyuan Wang, Yali Feng, Wenjie Zhang, Qingan Yang","doi":"10.1109/ICICIP.2015.7388166","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an new kernel adaptive filter, namely convex combination of quantized kernel least mean square algorithm (CC-QKLMS). By applying the convex combination idea to QKLMS, the CC-QKLMS takes the kernel sizes as the combined variables, which can achieve a fast convergence rate and a low steady-state mean-square error (MSE). In addition, since the quantization method is incorporated in CC-QKLMS, a linear growing network structure is naturally avoided. Simulation results on channel equalization validate the better performance of the CC-QKLMS in terms of the convergence rate and steady-state MSE.","PeriodicalId":265426,"journal":{"name":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Convex combination of quantized kernel least mean square algorithm\",\"authors\":\"Yunfei Zheng, Shiyuan Wang, Yali Feng, Wenjie Zhang, Qingan Yang\",\"doi\":\"10.1109/ICICIP.2015.7388166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an new kernel adaptive filter, namely convex combination of quantized kernel least mean square algorithm (CC-QKLMS). By applying the convex combination idea to QKLMS, the CC-QKLMS takes the kernel sizes as the combined variables, which can achieve a fast convergence rate and a low steady-state mean-square error (MSE). In addition, since the quantization method is incorporated in CC-QKLMS, a linear growing network structure is naturally avoided. Simulation results on channel equalization validate the better performance of the CC-QKLMS in terms of the convergence rate and steady-state MSE.\",\"PeriodicalId\":265426,\"journal\":{\"name\":\"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2015.7388166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2015.7388166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的核自适应滤波器,即凸组合量化核最小均方算法(CC-QKLMS)。将凸组合思想应用到QKLMS中,CC-QKLMS以核大小作为组合变量,具有较快的收敛速度和较低的稳态均方误差。此外,由于量化方法被纳入CC-QKLMS,自然避免了线性增长的网络结构。信道均衡的仿真结果验证了CC-QKLMS在收敛速率和稳态MSE方面具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convex combination of quantized kernel least mean square algorithm
In this paper, we propose an new kernel adaptive filter, namely convex combination of quantized kernel least mean square algorithm (CC-QKLMS). By applying the convex combination idea to QKLMS, the CC-QKLMS takes the kernel sizes as the combined variables, which can achieve a fast convergence rate and a low steady-state mean-square error (MSE). In addition, since the quantization method is incorporated in CC-QKLMS, a linear growing network structure is naturally avoided. Simulation results on channel equalization validate the better performance of the CC-QKLMS in terms of the convergence rate and steady-state MSE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new integrable hamiltonian hierarchy and associated integrable coupling system Memristor-based neural network PID controller for buck converter Online critic-identifier-actor algorithm for optimal control of nonlinear systems Optimal control for deferrable loads scheduling under the constraint of electricity supply Performance analysis for WFRFT-OFDM systems to carrier frequency offset in doubly selective fading channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1