基于萤火虫优化算法的岸电效益评价模型

Zhigang Zuo, Weiyou Zhao, Xiaoxue Ma, Zhihui Shang, Min Feng, Tao Su, Helu Zhang
{"title":"基于萤火虫优化算法的岸电效益评价模型","authors":"Zhigang Zuo, Weiyou Zhao, Xiaoxue Ma, Zhihui Shang, Min Feng, Tao Su, Helu Zhang","doi":"10.1109/ICMA54519.2022.9856323","DOIUrl":null,"url":null,"abstract":"Environmental security issues are increasingly becoming the focus of attention of the international community. In port cities, the exhaust gas from the generation systems of ships is an important source of pollution. The shore power systems can effectively reduce the air pollution problems. The complex costs and benefits of the shore power make it difficult to obtain optimal decisions. We calculate the net benefit of the shore power retrofit by proposing the benefit evaluation model. Furthermore, we propose the shore power based firefly optimization algorithm (SPBFOA) to search for optimal decisions. Specifically, algorithm prematurity is avoided by designing the hybrid encoding method, the protection of optimal decisions, and the auto-generation function. Finally, a decision search experiment based on EASIUR and APEEP is conducted, and the experimental results are discussed.","PeriodicalId":120073,"journal":{"name":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Benefit Evaluation Model for Shore Power with Firefly Optimization Algorithm\",\"authors\":\"Zhigang Zuo, Weiyou Zhao, Xiaoxue Ma, Zhihui Shang, Min Feng, Tao Su, Helu Zhang\",\"doi\":\"10.1109/ICMA54519.2022.9856323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental security issues are increasingly becoming the focus of attention of the international community. In port cities, the exhaust gas from the generation systems of ships is an important source of pollution. The shore power systems can effectively reduce the air pollution problems. The complex costs and benefits of the shore power make it difficult to obtain optimal decisions. We calculate the net benefit of the shore power retrofit by proposing the benefit evaluation model. Furthermore, we propose the shore power based firefly optimization algorithm (SPBFOA) to search for optimal decisions. Specifically, algorithm prematurity is avoided by designing the hybrid encoding method, the protection of optimal decisions, and the auto-generation function. Finally, a decision search experiment based on EASIUR and APEEP is conducted, and the experimental results are discussed.\",\"PeriodicalId\":120073,\"journal\":{\"name\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA54519.2022.9856323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA54519.2022.9856323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

环境安全问题日益成为国际社会关注的焦点。在港口城市,船舶发电系统排放的废气是一个重要的污染源。岸电系统可以有效地减少大气污染问题。岸电的成本和收益复杂,难以获得最优决策。通过建立效益评价模型,计算了岸电改造的净效益。此外,我们提出了基于岸电的萤火虫优化算法(SPBFOA)来搜索最优决策。通过设计混合编码方法、最优决策保护和自动生成功能,避免了算法的早熟。最后,进行了基于EASIUR和APEEP的决策搜索实验,并对实验结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Benefit Evaluation Model for Shore Power with Firefly Optimization Algorithm
Environmental security issues are increasingly becoming the focus of attention of the international community. In port cities, the exhaust gas from the generation systems of ships is an important source of pollution. The shore power systems can effectively reduce the air pollution problems. The complex costs and benefits of the shore power make it difficult to obtain optimal decisions. We calculate the net benefit of the shore power retrofit by proposing the benefit evaluation model. Furthermore, we propose the shore power based firefly optimization algorithm (SPBFOA) to search for optimal decisions. Specifically, algorithm prematurity is avoided by designing the hybrid encoding method, the protection of optimal decisions, and the auto-generation function. Finally, a decision search experiment based on EASIUR and APEEP is conducted, and the experimental results are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Fuzzy Indrect Adaptive Robust Control for Upper Extremity Exoskeleton Driven by Pneumatic Artificial Muscle Visual Localization Strategy for Indoor Mobile Robots in the Complex Environment Smart Prosthetic Knee for Above-Knee Amputees Research on the recovery system of the fixed wing swarm based on the robotic vision in the marine environment Lightning Arrester Target Segmentation Algorithm Based on Improved DeepLabv3+ and GrabCut
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1