基于数据融合的低精度传感器高精度姿态确定算法

Lu Cao, Tao Sheng, Xiaoqian Chen
{"title":"基于数据融合的低精度传感器高精度姿态确定算法","authors":"Lu Cao, Tao Sheng, Xiaoqian Chen","doi":"10.1109/CIMSA.2011.6059922","DOIUrl":null,"url":null,"abstract":"The technology of high precision attitude determination with low precision sensors based on data fusion is the objective requirement of modern small satellite. This paper presents a new attitude determination algorithm termed Pre-process EKF(PP-EKF) based on preprocess of sensor data. It can enhance the overall modeling accuracy by using the quadratic penalty function to correct the kinematics model error and angular velocity error in real-time. The measurement model of EKF is linearized by introducing q method the solution error of which is also corrected to futher improve the accuracy of the measurement model and make better use of measurement data from low precision sensors, so as to ultimately obtain good attitude determinination results. At last, the simulation results demonstrate the high reliability and advantages of the proposed algorithm.","PeriodicalId":422972,"journal":{"name":"2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The algorithm of high precision attitude determination with low precision sensors based on data fusion\",\"authors\":\"Lu Cao, Tao Sheng, Xiaoqian Chen\",\"doi\":\"10.1109/CIMSA.2011.6059922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The technology of high precision attitude determination with low precision sensors based on data fusion is the objective requirement of modern small satellite. This paper presents a new attitude determination algorithm termed Pre-process EKF(PP-EKF) based on preprocess of sensor data. It can enhance the overall modeling accuracy by using the quadratic penalty function to correct the kinematics model error and angular velocity error in real-time. The measurement model of EKF is linearized by introducing q method the solution error of which is also corrected to futher improve the accuracy of the measurement model and make better use of measurement data from low precision sensors, so as to ultimately obtain good attitude determinination results. At last, the simulation results demonstrate the high reliability and advantages of the proposed algorithm.\",\"PeriodicalId\":422972,\"journal\":{\"name\":\"2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMSA.2011.6059922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2011.6059922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于数据融合的低精度传感器高精度定姿技术是现代小卫星发展的客观要求。提出了一种基于传感器数据预处理的姿态确定算法,称为预处理EKF(Pre-process EKF)。利用二次罚函数实时修正运动学模型误差和角速度误差,提高整体建模精度。引入q方法对EKF测量模型进行线性化处理,并对q方法的求解误差进行校正,进一步提高测量模型的精度,更好地利用低精度传感器的测量数据,最终获得较好的姿态确定结果。最后,仿真结果验证了该算法的高可靠性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The algorithm of high precision attitude determination with low precision sensors based on data fusion
The technology of high precision attitude determination with low precision sensors based on data fusion is the objective requirement of modern small satellite. This paper presents a new attitude determination algorithm termed Pre-process EKF(PP-EKF) based on preprocess of sensor data. It can enhance the overall modeling accuracy by using the quadratic penalty function to correct the kinematics model error and angular velocity error in real-time. The measurement model of EKF is linearized by introducing q method the solution error of which is also corrected to futher improve the accuracy of the measurement model and make better use of measurement data from low precision sensors, so as to ultimately obtain good attitude determinination results. At last, the simulation results demonstrate the high reliability and advantages of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Personal dosimeter for the measurement of artificial optical radiation (AOR) exposure Designing a fuzzy expert system to predict the concrete mix design Wildfire smoke detection using computational intelligence techniques Low-cost optimal state feedback fuzzy control of nonlinear second-order servo systems Intelligent control of bioreactor landfills
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1