矢量近似信息传递量化压缩感知

Daniel Franz, V. Kuehn
{"title":"矢量近似信息传递量化压缩感知","authors":"Daniel Franz, V. Kuehn","doi":"10.1109/GlobalSIP.2018.8646432","DOIUrl":null,"url":null,"abstract":"In recent years approximate message passing algorithms have gained a lot of attention and different versions have been proposed for coping with various system models. This paper focuses on vector approximate message passing (VAMP) for generalized linear models. While this algorithm is originally derived from a message passing point of view, we will review it from an estimation theory perspective and afterwards adapt it for a quantized compressed sensing application. Finally, numerical results are presented to evaluate the performance of the algorithm.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"VECTOR APPROXIMATE MESSAGE PASSING FOR QUANTIZED COMPRESSED SENSING\",\"authors\":\"Daniel Franz, V. Kuehn\",\"doi\":\"10.1109/GlobalSIP.2018.8646432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years approximate message passing algorithms have gained a lot of attention and different versions have been proposed for coping with various system models. This paper focuses on vector approximate message passing (VAMP) for generalized linear models. While this algorithm is originally derived from a message passing point of view, we will review it from an estimation theory perspective and afterwards adapt it for a quantized compressed sensing application. Finally, numerical results are presented to evaluate the performance of the algorithm.\",\"PeriodicalId\":119131,\"journal\":{\"name\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2018.8646432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,近似消息传递算法受到了广泛的关注,针对不同的系统模型提出了不同的版本。本文研究广义线性模型的向量近似消息传递(VAMP)。虽然该算法最初是从消息传递的角度推导出来的,但我们将从估计理论的角度对其进行审查,然后将其用于量化压缩感知应用。最后给出了数值结果来评价算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VECTOR APPROXIMATE MESSAGE PASSING FOR QUANTIZED COMPRESSED SENSING
In recent years approximate message passing algorithms have gained a lot of attention and different versions have been proposed for coping with various system models. This paper focuses on vector approximate message passing (VAMP) for generalized linear models. While this algorithm is originally derived from a message passing point of view, we will review it from an estimation theory perspective and afterwards adapt it for a quantized compressed sensing application. Finally, numerical results are presented to evaluate the performance of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES CNN ARCHITECTURES FOR GRAPH DATA OVERT SPEECH RETRIEVAL FROM NEUROMAGNETIC SIGNALS USING WAVELETS AND ARTIFICIAL NEURAL NETWORKS CNN BASED RICIAN K FACTOR ESTIMATION FOR NON-STATIONARY INDUSTRIAL FADING CHANNEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1