物联网流数据异常检测的服务选择框架

Zhongguo Yang, Weilong Ding, Zhongmei Zhang, Han Li, Mingzhu Zhang, Chen Liu
{"title":"物联网流数据异常检测的服务选择框架","authors":"Zhongguo Yang, Weilong Ding, Zhongmei Zhang, Han Li, Mingzhu Zhang, Chen Liu","doi":"10.1109/ICSS50103.2020.00032","DOIUrl":null,"url":null,"abstract":"Many anomaly detection algorithms have been provided as services for more convenient and efficient utilization in IoT era. Due to concept drift existed in dynamic IoT stream data, it is a changeling task to apply proper anomaly detection services at run time. For effective on-line anomalous data discovery, this paper proposes a service selection framework to dynamically select and configure anomaly detection services. A fast classification model based on XGBoost is trained to identify the pattern of various stream data, so that suitable service can be selected and configured according to the pattern of stream data. Extensive experiments on real and synthetic data sets show that our framework can select suitable service for different scenarios, and the accuracy of the chosen services outperforms state-of-the-art methods.","PeriodicalId":292795,"journal":{"name":"2020 International Conference on Service Science (ICSS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Service Selection Framework for Anomaly Detection in IoT Stream Data\",\"authors\":\"Zhongguo Yang, Weilong Ding, Zhongmei Zhang, Han Li, Mingzhu Zhang, Chen Liu\",\"doi\":\"10.1109/ICSS50103.2020.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many anomaly detection algorithms have been provided as services for more convenient and efficient utilization in IoT era. Due to concept drift existed in dynamic IoT stream data, it is a changeling task to apply proper anomaly detection services at run time. For effective on-line anomalous data discovery, this paper proposes a service selection framework to dynamically select and configure anomaly detection services. A fast classification model based on XGBoost is trained to identify the pattern of various stream data, so that suitable service can be selected and configured according to the pattern of stream data. Extensive experiments on real and synthetic data sets show that our framework can select suitable service for different scenarios, and the accuracy of the chosen services outperforms state-of-the-art methods.\",\"PeriodicalId\":292795,\"journal\":{\"name\":\"2020 International Conference on Service Science (ICSS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Service Science (ICSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSS50103.2020.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Service Science (ICSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSS50103.2020.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了在物联网时代更方便高效的利用,许多异常检测算法作为服务被提供。由于动态物联网流数据存在概念漂移,因此在运行时应用适当的异常检测服务是一项转换任务。为了有效地在线发现异常数据,本文提出了一种动态选择和配置异常检测服务的服务选择框架。训练基于XGBoost的快速分类模型来识别各种流数据的模式,从而根据流数据的模式选择和配置合适的服务。在真实和合成数据集上进行的大量实验表明,我们的框架可以为不同的场景选择合适的服务,所选服务的准确性优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Service Selection Framework for Anomaly Detection in IoT Stream Data
Many anomaly detection algorithms have been provided as services for more convenient and efficient utilization in IoT era. Due to concept drift existed in dynamic IoT stream data, it is a changeling task to apply proper anomaly detection services at run time. For effective on-line anomalous data discovery, this paper proposes a service selection framework to dynamically select and configure anomaly detection services. A fast classification model based on XGBoost is trained to identify the pattern of various stream data, so that suitable service can be selected and configured according to the pattern of stream data. Extensive experiments on real and synthetic data sets show that our framework can select suitable service for different scenarios, and the accuracy of the chosen services outperforms state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the Program Committee Chairs ICSS 2020 Reference Service Process: A Normalized Cross-Over Service Collaboration Paradigm An Analysis of DevOps Architecture for EMIS based on jBPM A Zone Routing Algorithm for Service Network An Internet Medical Service Recommendation Method based on Collaborative Filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1