{"title":"基于ISTF-pid的直流伺服电机控制","authors":"Arjun Swami, P. Gaur","doi":"10.1109/POWERI.2016.8077237","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to control the speed of a non-linear D.C. servo motor using various control techniques. Installing only a Proportional controller (P) to control the system, it is observed that there is high overshoot (OS), undershoot (US) and the system takes time to achieve its steady state. The performance of the system relatively improves by installing a conventional PID controller as it decreases the overshoot, undershoot of the system and the system attains steady state faster. The conventional PID controller cannot tackle the nonlinear systems effectively and gives a poor tracking and disturbance rejection performance. In order to further improve the response of the system, Improved Self Tuning Fuzzy (ISTF)-PID controller has been used. In this technique fuzzy logic is used to tune the gains of a PID controller. The various control techniques that are discussed in this paper are designed to achieve the desired D.C. servo motor speed.","PeriodicalId":332286,"journal":{"name":"2016 IEEE 7th Power India International Conference (PIICON)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ISTF-pid based D.C. servo motor control\",\"authors\":\"Arjun Swami, P. Gaur\",\"doi\":\"10.1109/POWERI.2016.8077237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to control the speed of a non-linear D.C. servo motor using various control techniques. Installing only a Proportional controller (P) to control the system, it is observed that there is high overshoot (OS), undershoot (US) and the system takes time to achieve its steady state. The performance of the system relatively improves by installing a conventional PID controller as it decreases the overshoot, undershoot of the system and the system attains steady state faster. The conventional PID controller cannot tackle the nonlinear systems effectively and gives a poor tracking and disturbance rejection performance. In order to further improve the response of the system, Improved Self Tuning Fuzzy (ISTF)-PID controller has been used. In this technique fuzzy logic is used to tune the gains of a PID controller. The various control techniques that are discussed in this paper are designed to achieve the desired D.C. servo motor speed.\",\"PeriodicalId\":332286,\"journal\":{\"name\":\"2016 IEEE 7th Power India International Conference (PIICON)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 7th Power India International Conference (PIICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POWERI.2016.8077237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 7th Power India International Conference (PIICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERI.2016.8077237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The objective of this paper is to control the speed of a non-linear D.C. servo motor using various control techniques. Installing only a Proportional controller (P) to control the system, it is observed that there is high overshoot (OS), undershoot (US) and the system takes time to achieve its steady state. The performance of the system relatively improves by installing a conventional PID controller as it decreases the overshoot, undershoot of the system and the system attains steady state faster. The conventional PID controller cannot tackle the nonlinear systems effectively and gives a poor tracking and disturbance rejection performance. In order to further improve the response of the system, Improved Self Tuning Fuzzy (ISTF)-PID controller has been used. In this technique fuzzy logic is used to tune the gains of a PID controller. The various control techniques that are discussed in this paper are designed to achieve the desired D.C. servo motor speed.