基于混合贝叶斯网络的驾驶员状态估计算法研究

Dong Woon Ryu, Hyeon Bin Jeong, Sang Hun Lee, Woon-Sung Lee, J. H. Yang
{"title":"基于混合贝叶斯网络的驾驶员状态估计算法研究","authors":"Dong Woon Ryu, Hyeon Bin Jeong, Sang Hun Lee, Woon-Sung Lee, J. H. Yang","doi":"10.1109/IVS.2015.7225873","DOIUrl":null,"url":null,"abstract":"In this study, we develop and evaluate an estimation algorithm of abnormal driving states (drowsiness, distraction, and workload) based on a Hybrid Bayesian Network (HBN) using multimodal information. The HBN algorithm is expected to increase transportation safety by combining merits of both the Bayesian Network and clustering algorithm. In addition, multimodal data efficacy analysis through human-in-the-loop experiments is used to enhance the performance of the driver-state estimation algorithm. Performance results obtained the lowest false alarm rate and fastest calculation speed. The false alarm rate decreased from 18.2 to 15.5%, whereas the calculation speed decreased by 4.35%.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Development of driver-state estimation algorithm based on Hybrid Bayesian Network\",\"authors\":\"Dong Woon Ryu, Hyeon Bin Jeong, Sang Hun Lee, Woon-Sung Lee, J. H. Yang\",\"doi\":\"10.1109/IVS.2015.7225873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we develop and evaluate an estimation algorithm of abnormal driving states (drowsiness, distraction, and workload) based on a Hybrid Bayesian Network (HBN) using multimodal information. The HBN algorithm is expected to increase transportation safety by combining merits of both the Bayesian Network and clustering algorithm. In addition, multimodal data efficacy analysis through human-in-the-loop experiments is used to enhance the performance of the driver-state estimation algorithm. Performance results obtained the lowest false alarm rate and fastest calculation speed. The false alarm rate decreased from 18.2 to 15.5%, whereas the calculation speed decreased by 4.35%.\",\"PeriodicalId\":294701,\"journal\":{\"name\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2015.7225873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在这项研究中,我们开发并评估了一种基于混合贝叶斯网络(HBN)的基于多模态信息的异常驾驶状态(嗜睡、分心和工作负载)的估计算法。HBN算法结合贝叶斯网络和聚类算法的优点,有望提高运输安全性。此外,通过人在环实验进行多模态数据有效性分析,提高了驾驶员状态估计算法的性能。性能结果获得了最低的虚警率和最快的计算速度。虚警率由18.2%下降到15.5%,计算速度下降4.35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of driver-state estimation algorithm based on Hybrid Bayesian Network
In this study, we develop and evaluate an estimation algorithm of abnormal driving states (drowsiness, distraction, and workload) based on a Hybrid Bayesian Network (HBN) using multimodal information. The HBN algorithm is expected to increase transportation safety by combining merits of both the Bayesian Network and clustering algorithm. In addition, multimodal data efficacy analysis through human-in-the-loop experiments is used to enhance the performance of the driver-state estimation algorithm. Performance results obtained the lowest false alarm rate and fastest calculation speed. The false alarm rate decreased from 18.2 to 15.5%, whereas the calculation speed decreased by 4.35%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal parameter selection of a Model Predictive Control algorithm for energy efficient driving of heavy duty vehicles Map free lane following based on low-cost laser scanner for near future autonomous service vehicle Real-time small obstacle detection on highways using compressive RBM road reconstruction Developing a framework of Eco-Approach and Departure application for actuated signal control Face orientation estimation for driver monitoring with a single depth camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1