关于PI-Net深度学习模型的图像分类

Abdellah Haddad, B. A. El Majd, D. Bennis
{"title":"关于PI-Net深度学习模型的图像分类","authors":"Abdellah Haddad, B. A. El Majd, D. Bennis","doi":"10.1109/ICOA55659.2022.9934351","DOIUrl":null,"url":null,"abstract":"In this note we discuss the experiment part of the paper “PINet: A Deep Learning Approach to Extract Topological Persistence Images”, where Som et al. trained a base classification model called AlexNet on Cifar10 dataset to get an accuracy of 80%. Then, they concatenated the PIs features with AlexNet base features and trained the model once again to get an accuracy of around 81%. Here we give a slight modification of the PI-Net architecture. Namely, we add two dense layers at the end of the model, the first one has 1024 neurons with ReLu activation and the last one has 10 neurons with Softmax activation, and then we use it as a base classification model on Cifar10 dataset. This enables us to reach an accuracy of 82%.","PeriodicalId":345017,"journal":{"name":"2022 8th International Conference on Optimization and Applications (ICOA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On PI-Net deep learning model for classification of images\",\"authors\":\"Abdellah Haddad, B. A. El Majd, D. Bennis\",\"doi\":\"10.1109/ICOA55659.2022.9934351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we discuss the experiment part of the paper “PINet: A Deep Learning Approach to Extract Topological Persistence Images”, where Som et al. trained a base classification model called AlexNet on Cifar10 dataset to get an accuracy of 80%. Then, they concatenated the PIs features with AlexNet base features and trained the model once again to get an accuracy of around 81%. Here we give a slight modification of the PI-Net architecture. Namely, we add two dense layers at the end of the model, the first one has 1024 neurons with ReLu activation and the last one has 10 neurons with Softmax activation, and then we use it as a base classification model on Cifar10 dataset. This enables us to reach an accuracy of 82%.\",\"PeriodicalId\":345017,\"journal\":{\"name\":\"2022 8th International Conference on Optimization and Applications (ICOA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 8th International Conference on Optimization and Applications (ICOA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOA55659.2022.9934351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA55659.2022.9934351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们讨论了论文“PINet:一种提取拓扑持久性图像的深度学习方法”的实验部分,其中Som等人在Cifar10数据集上训练了一个名为AlexNet的基本分类模型,获得了80%的准确率。然后,他们将pi特征与AlexNet基础特征连接起来,并再次训练模型,以获得约81%的准确率。在这里,我们对PI-Net体系结构进行了轻微的修改。即,我们在模型的最后增加两个密集层,第一个层有1024个ReLu激活的神经元,最后一个层有10个Softmax激活的神经元,然后我们将其作为Cifar10数据集上的基本分类模型。这使我们能够达到82%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On PI-Net deep learning model for classification of images
In this note we discuss the experiment part of the paper “PINet: A Deep Learning Approach to Extract Topological Persistence Images”, where Som et al. trained a base classification model called AlexNet on Cifar10 dataset to get an accuracy of 80%. Then, they concatenated the PIs features with AlexNet base features and trained the model once again to get an accuracy of around 81%. Here we give a slight modification of the PI-Net architecture. Namely, we add two dense layers at the end of the model, the first one has 1024 neurons with ReLu activation and the last one has 10 neurons with Softmax activation, and then we use it as a base classification model on Cifar10 dataset. This enables us to reach an accuracy of 82%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The importance of enterprise resource planning (ERP) in the optimisation of the small and medium enterprise's ressources in Morocco Nonsmooth Optimization for Synaptic Depression Dynamics 6G and V2X Communications: Applications, Features, and Challenges An Optimized Adaptive Learning Approach Based on Cuckoo Search Algorithm Waste solid management using Machine learning approch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1