{"title":"CSG模型到距离体的三维扫描转换","authors":"D. Breen, S. Mauch, Ross T. Whitaker","doi":"10.1145/288126.288137","DOIUrl":null,"url":null,"abstract":"A distance volume is a volume dataset where the value stored at each voxel is the shortest distance to the surface of the object being represented by the volume. Distance volumes are a useful representation in a number of computer graphics applications. We present a technique for generating a distance volume with sub-voxel accuracy from one type of geometric model, a constructive solid geometry (CSG) model consisting of superellipsoid primitives. The distance volume is generated in a two step process. The first step calculates the shortest distance to the CSG model at a set of points within a narrow band around the evaluated surface. Additionally, a second set of points, labeled the zero set, which lies on the CSG model's surface are computed. A point in the zero set is associated with each point in the narrow band. Once the narrow band and zero set are calculated, a fast marching method is employed to propagate the shortest distance and closest point information out to the remaining voxels in the volume. Our technique has been used to scan convert a number of CSG models, producing distance volumes which have been utilized in a variety of computer graphics applications, e.g. CSG surface evaluation, offset surface generation, and 3D model morphing.","PeriodicalId":167141,"journal":{"name":"IEEE Symposium on Volume Visualization (Cat. No.989EX300)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":"{\"title\":\"3D scan conversion of CSG models into distance volumes\",\"authors\":\"D. Breen, S. Mauch, Ross T. Whitaker\",\"doi\":\"10.1145/288126.288137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A distance volume is a volume dataset where the value stored at each voxel is the shortest distance to the surface of the object being represented by the volume. Distance volumes are a useful representation in a number of computer graphics applications. We present a technique for generating a distance volume with sub-voxel accuracy from one type of geometric model, a constructive solid geometry (CSG) model consisting of superellipsoid primitives. The distance volume is generated in a two step process. The first step calculates the shortest distance to the CSG model at a set of points within a narrow band around the evaluated surface. Additionally, a second set of points, labeled the zero set, which lies on the CSG model's surface are computed. A point in the zero set is associated with each point in the narrow band. Once the narrow band and zero set are calculated, a fast marching method is employed to propagate the shortest distance and closest point information out to the remaining voxels in the volume. Our technique has been used to scan convert a number of CSG models, producing distance volumes which have been utilized in a variety of computer graphics applications, e.g. CSG surface evaluation, offset surface generation, and 3D model morphing.\",\"PeriodicalId\":167141,\"journal\":{\"name\":\"IEEE Symposium on Volume Visualization (Cat. No.989EX300)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"129\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Symposium on Volume Visualization (Cat. No.989EX300)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/288126.288137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Volume Visualization (Cat. No.989EX300)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/288126.288137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D scan conversion of CSG models into distance volumes
A distance volume is a volume dataset where the value stored at each voxel is the shortest distance to the surface of the object being represented by the volume. Distance volumes are a useful representation in a number of computer graphics applications. We present a technique for generating a distance volume with sub-voxel accuracy from one type of geometric model, a constructive solid geometry (CSG) model consisting of superellipsoid primitives. The distance volume is generated in a two step process. The first step calculates the shortest distance to the CSG model at a set of points within a narrow band around the evaluated surface. Additionally, a second set of points, labeled the zero set, which lies on the CSG model's surface are computed. A point in the zero set is associated with each point in the narrow band. Once the narrow band and zero set are calculated, a fast marching method is employed to propagate the shortest distance and closest point information out to the remaining voxels in the volume. Our technique has been used to scan convert a number of CSG models, producing distance volumes which have been utilized in a variety of computer graphics applications, e.g. CSG surface evaluation, offset surface generation, and 3D model morphing.