宇宙射线介子计算机断层扫描和可场光谱学研究进展

S. Chatzidakis, Junghyun Bae
{"title":"宇宙射线介子计算机断层扫描和可场光谱学研究进展","authors":"S. Chatzidakis, Junghyun Bae","doi":"10.12681/hnps.3584","DOIUrl":null,"url":null,"abstract":"A recent example of successful technology transition from high energy physics to practical engineering applications is cosmic ray muon tomography. Cosmic ray muon tomography, is a promising non-destructive technique that has been recently utilized to monitor or image the contents of dense or well shielded objects, typically not feasible with conventional radiography techniques, e.g., x-ray or neutron. Cosmic ray muon tomography has been used with various levels of success in spent nuclear fuel monitoring, volcano imaging, and cargo container imaging. Further, knowledge of cosmic ray muon momentum spectrum has the potential to significantly improve and expand the use of a variety of recently developed muon-based radiographic techniques. However, existing muon tomography systems rely only on muon tracking and have no momentum measurement capabilities which reduces the image resolution and requires longer measurement times. A fieldable cosmic ray muon spectrometer with momentum measurement capabilities for use in muon tomography is currently missing. In this paper, we will discuss and explore recent advances in cosmic ray muon computed tomography and spectroscopy and their applications to engineering including a new concept for measuring muon momentum using multiple gaseous Cherenkov radiators. By varying the pressure of multiple gas Cherenkov radiators, a set of muon momentum threshold levels can be selected that are triggered only when the incoming muon momentum exceeds that level. As a result, depending on the incoming muon momentum, none to all Cherenkov radiators can be triggered. By analyzing the signals from each radiator, we can estimate the actual muon momentum.","PeriodicalId":262803,"journal":{"name":"HNPS Advances in Nuclear Physics","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Cosmic Ray Muon Computed Tomography and Fieldable Spectroscopy\",\"authors\":\"S. Chatzidakis, Junghyun Bae\",\"doi\":\"10.12681/hnps.3584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recent example of successful technology transition from high energy physics to practical engineering applications is cosmic ray muon tomography. Cosmic ray muon tomography, is a promising non-destructive technique that has been recently utilized to monitor or image the contents of dense or well shielded objects, typically not feasible with conventional radiography techniques, e.g., x-ray or neutron. Cosmic ray muon tomography has been used with various levels of success in spent nuclear fuel monitoring, volcano imaging, and cargo container imaging. Further, knowledge of cosmic ray muon momentum spectrum has the potential to significantly improve and expand the use of a variety of recently developed muon-based radiographic techniques. However, existing muon tomography systems rely only on muon tracking and have no momentum measurement capabilities which reduces the image resolution and requires longer measurement times. A fieldable cosmic ray muon spectrometer with momentum measurement capabilities for use in muon tomography is currently missing. In this paper, we will discuss and explore recent advances in cosmic ray muon computed tomography and spectroscopy and their applications to engineering including a new concept for measuring muon momentum using multiple gaseous Cherenkov radiators. By varying the pressure of multiple gas Cherenkov radiators, a set of muon momentum threshold levels can be selected that are triggered only when the incoming muon momentum exceeds that level. As a result, depending on the incoming muon momentum, none to all Cherenkov radiators can be triggered. By analyzing the signals from each radiator, we can estimate the actual muon momentum.\",\"PeriodicalId\":262803,\"journal\":{\"name\":\"HNPS Advances in Nuclear Physics\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HNPS Advances in Nuclear Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12681/hnps.3584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HNPS Advances in Nuclear Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12681/hnps.3584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近一个从高能物理学到实际工程应用的成功技术转换的例子是宇宙射线介子断层扫描。宇宙射线介子断层扫描是一种很有前途的非破坏性技术,最近被用于监测或成像致密或屏蔽良好的物体的内容,这通常是传统的x射线摄影技术(例如x射线或中子)不可行的。宇宙射线介子层析成像在乏核燃料监测、火山成像和货物集装箱成像方面取得了不同程度的成功。此外,宇宙射线μ子动量谱的知识有可能显著改善和扩大各种最近开发的基于μ子的射线照相技术的使用。然而,现有的介子层析成像系统仅依赖于介子跟踪,没有动量测量能力,这降低了图像分辨率,并且需要更长的测量时间。目前还缺少一种具有动量测量能力的可用于μ子断层扫描的宇宙射线μ子光谱仪。在本文中,我们将讨论和探讨宇宙射线μ子计算机断层扫描和光谱学的最新进展及其在工程中的应用,包括使用多个气态切伦科夫辐射体测量μ子动量的新概念。通过改变多个气体切伦科夫辐射体的压力,可以选择一组μ子动量阈值水平,只有当进入的μ子动量超过该水平时才会触发。结果,根据进入的介子动量,没有一个到所有切伦科夫辐射体可以被触发。通过分析来自每个辐射体的信号,我们可以估计出实际的μ子动量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in Cosmic Ray Muon Computed Tomography and Fieldable Spectroscopy
A recent example of successful technology transition from high energy physics to practical engineering applications is cosmic ray muon tomography. Cosmic ray muon tomography, is a promising non-destructive technique that has been recently utilized to monitor or image the contents of dense or well shielded objects, typically not feasible with conventional radiography techniques, e.g., x-ray or neutron. Cosmic ray muon tomography has been used with various levels of success in spent nuclear fuel monitoring, volcano imaging, and cargo container imaging. Further, knowledge of cosmic ray muon momentum spectrum has the potential to significantly improve and expand the use of a variety of recently developed muon-based radiographic techniques. However, existing muon tomography systems rely only on muon tracking and have no momentum measurement capabilities which reduces the image resolution and requires longer measurement times. A fieldable cosmic ray muon spectrometer with momentum measurement capabilities for use in muon tomography is currently missing. In this paper, we will discuss and explore recent advances in cosmic ray muon computed tomography and spectroscopy and their applications to engineering including a new concept for measuring muon momentum using multiple gaseous Cherenkov radiators. By varying the pressure of multiple gas Cherenkov radiators, a set of muon momentum threshold levels can be selected that are triggered only when the incoming muon momentum exceeds that level. As a result, depending on the incoming muon momentum, none to all Cherenkov radiators can be triggered. By analyzing the signals from each radiator, we can estimate the actual muon momentum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Radioactivity measurements in eastern Lesvos, Greece Nuclear power as part of the Greek energy mix: Far better to be cost effectively proactive than unconditionally inactive Ion Traps for Nuclear Decay Studies: a design for a handheld Electron Beam Ion Trap (EBIT) Momentum Distribution Studies of Projectile Fragments from Peripheral Collisions Below the Fermi Energy Chernobyl and Fukushima nuclear accidents: similarities and differences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1