基于SSA-RBF神经网络的MEMS陀螺仪温度补偿

Yuanhua Liu, Ziwei Wang, Xinliang Niu
{"title":"基于SSA-RBF神经网络的MEMS陀螺仪温度补偿","authors":"Yuanhua Liu, Ziwei Wang, Xinliang Niu","doi":"10.1145/3573942.3573959","DOIUrl":null,"url":null,"abstract":"The output of the Micro Electro-mechanical System (MEMS) gyroscope is susceptible affected by temperature drift, which reduces the measurement accuracy of the gyroscope. In this paper, a gyroscope temperature compensation method based on sparrow search algorithm (SSA) and radial basis function (RBF) neural network is proposed to reduce the temperature drift error of gyroscope. Firstly, we utilize the RBF neural network to establish the model of temperature error on the original output of gyroscope; then SSA is employed to find the optimal parameters of the RBF neural network in order to improve its search speed and generalization performance; finally, the optimized RBF neural network is applied to the temperature compensation of the gyroscope. The numerical simulation and comparison results under different temperatures demonstrate that, compared with polynomial and RBF neural network, the SSA-RBF neural network compensation method has superior compensation accuracy and faster convergence speed, which significantly reduces the maximum error, mean value and the standard deviation of gyroscope. Thus, the proposed SSA-RBF method can obtain more accurate fitting performance, effectively compensate the temperature error of MEMS gyroscope, and improve the MEMS gyroscope measurement accuracy.","PeriodicalId":103293,"journal":{"name":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MEMS Gyroscope Temperature Compensation Based on SSA-RBF Neural Network\",\"authors\":\"Yuanhua Liu, Ziwei Wang, Xinliang Niu\",\"doi\":\"10.1145/3573942.3573959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The output of the Micro Electro-mechanical System (MEMS) gyroscope is susceptible affected by temperature drift, which reduces the measurement accuracy of the gyroscope. In this paper, a gyroscope temperature compensation method based on sparrow search algorithm (SSA) and radial basis function (RBF) neural network is proposed to reduce the temperature drift error of gyroscope. Firstly, we utilize the RBF neural network to establish the model of temperature error on the original output of gyroscope; then SSA is employed to find the optimal parameters of the RBF neural network in order to improve its search speed and generalization performance; finally, the optimized RBF neural network is applied to the temperature compensation of the gyroscope. The numerical simulation and comparison results under different temperatures demonstrate that, compared with polynomial and RBF neural network, the SSA-RBF neural network compensation method has superior compensation accuracy and faster convergence speed, which significantly reduces the maximum error, mean value and the standard deviation of gyroscope. Thus, the proposed SSA-RBF method can obtain more accurate fitting performance, effectively compensate the temperature error of MEMS gyroscope, and improve the MEMS gyroscope measurement accuracy.\",\"PeriodicalId\":103293,\"journal\":{\"name\":\"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3573942.3573959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573942.3573959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微机电系统(MEMS)陀螺仪的输出容易受到温度漂移的影响,从而降低了陀螺仪的测量精度。为了减小陀螺仪的温度漂移误差,提出了一种基于麻雀搜索算法(SSA)和径向基函数(RBF)神经网络的陀螺仪温度补偿方法。首先,利用RBF神经网络建立陀螺仪原始输出的温度误差模型;然后利用SSA算法寻找RBF神经网络的最优参数,以提高其搜索速度和泛化性能;最后,将优化后的RBF神经网络应用于陀螺仪的温度补偿。不同温度下的数值模拟和对比结果表明,与多项式和RBF神经网络相比,SSA-RBF神经网络补偿方法具有更高的补偿精度和更快的收敛速度,显著降低了陀螺仪的最大误差、平均值和标准差。因此,所提出的SSA-RBF方法可以获得更精确的拟合性能,有效补偿MEMS陀螺仪的温度误差,提高MEMS陀螺仪的测量精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MEMS Gyroscope Temperature Compensation Based on SSA-RBF Neural Network
The output of the Micro Electro-mechanical System (MEMS) gyroscope is susceptible affected by temperature drift, which reduces the measurement accuracy of the gyroscope. In this paper, a gyroscope temperature compensation method based on sparrow search algorithm (SSA) and radial basis function (RBF) neural network is proposed to reduce the temperature drift error of gyroscope. Firstly, we utilize the RBF neural network to establish the model of temperature error on the original output of gyroscope; then SSA is employed to find the optimal parameters of the RBF neural network in order to improve its search speed and generalization performance; finally, the optimized RBF neural network is applied to the temperature compensation of the gyroscope. The numerical simulation and comparison results under different temperatures demonstrate that, compared with polynomial and RBF neural network, the SSA-RBF neural network compensation method has superior compensation accuracy and faster convergence speed, which significantly reduces the maximum error, mean value and the standard deviation of gyroscope. Thus, the proposed SSA-RBF method can obtain more accurate fitting performance, effectively compensate the temperature error of MEMS gyroscope, and improve the MEMS gyroscope measurement accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model Lightweight Method for Object Detection Incremental Encoding Transformer Incorporating Common-sense Awareness for Conversational Sentiment Recognition Non-intrusive Automatic 3D Gaze Ground-truth System Fiber Optic Gyroscope Random Error Modeling Based on Improved Kalman Filtering Channel Modeling of Spaceborne Multiwavelet Packet OFDM System Based on CWGAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1