{"title":"重访kd树进行最近邻搜索","authors":"P. Ram, Kaushik Sinha","doi":"10.1145/3292500.3330875","DOIUrl":null,"url":null,"abstract":"\\kdtree \\citefriedman1976algorithm has long been deemed unsuitable for exact nearest-neighbor search in high dimensional data. The theoretical guarantees and the empirical performance of \\kdtree do not show significant improvements over brute-force nearest-neighbor search in moderate to high dimensions. \\kdtree has been used relatively more successfully for approximate search \\citemuja2009flann but lack theoretical guarantees. In the article, we build upon randomized-partition trees \\citedasgupta2013randomized to propose \\kdtree based approximate search schemes with $O(d łog d + łog n)$ query time for data sets with n points in d dimensions and rigorous theoretical guarantees on the search accuracy. We empirically validate the search accuracy and the query time guarantees of our proposed schemes, demonstrating the significantly improved scaling for same level of accuracy.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Revisiting kd-tree for Nearest Neighbor Search\",\"authors\":\"P. Ram, Kaushik Sinha\",\"doi\":\"10.1145/3292500.3330875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\\kdtree \\\\citefriedman1976algorithm has long been deemed unsuitable for exact nearest-neighbor search in high dimensional data. The theoretical guarantees and the empirical performance of \\\\kdtree do not show significant improvements over brute-force nearest-neighbor search in moderate to high dimensions. \\\\kdtree has been used relatively more successfully for approximate search \\\\citemuja2009flann but lack theoretical guarantees. In the article, we build upon randomized-partition trees \\\\citedasgupta2013randomized to propose \\\\kdtree based approximate search schemes with $O(d łog d + łog n)$ query time for data sets with n points in d dimensions and rigorous theoretical guarantees on the search accuracy. We empirically validate the search accuracy and the query time guarantees of our proposed schemes, demonstrating the significantly improved scaling for same level of accuracy.\",\"PeriodicalId\":186134,\"journal\":{\"name\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3292500.3330875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

算法一直被认为不适用于高维数据的精确近邻搜索。\kdtree的理论保证和经验性能在中高维度上没有表现出比暴力最近邻搜索有显著改善。\kdtree已经相对成功地用于近似搜索\citemuja2009flann,但缺乏理论保证。在本文中,我们在随机分区树\ citedasgupta2013randomzed的基础上,对d维中有n个点的数据集提出了基于\kdtree的近似搜索方案,查询时间为$O(d łog d + łog n)$,并且在理论上严格保证了搜索精度。我们通过经验验证了我们提出的方案的搜索精度和查询时间保证,证明了在相同精度水平下的显着改进的缩放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revisiting kd-tree for Nearest Neighbor Search
\kdtree \citefriedman1976algorithm has long been deemed unsuitable for exact nearest-neighbor search in high dimensional data. The theoretical guarantees and the empirical performance of \kdtree do not show significant improvements over brute-force nearest-neighbor search in moderate to high dimensions. \kdtree has been used relatively more successfully for approximate search \citemuja2009flann but lack theoretical guarantees. In the article, we build upon randomized-partition trees \citedasgupta2013randomized to propose \kdtree based approximate search schemes with $O(d łog d + łog n)$ query time for data sets with n points in d dimensions and rigorous theoretical guarantees on the search accuracy. We empirically validate the search accuracy and the query time guarantees of our proposed schemes, demonstrating the significantly improved scaling for same level of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tackle Balancing Constraint for Incremental Semi-Supervised Support Vector Learning HATS Temporal Probabilistic Profiles for Sepsis Prediction in the ICU Large-scale User Visits Understanding and Forecasting with Deep Spatial-Temporal Tensor Factorization Framework Adaptive Influence Maximization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1