用滤光片测量波前传感

G. Fütterer
{"title":"用滤光片测量波前传感","authors":"G. Fütterer","doi":"10.1117/12.2530013","DOIUrl":null,"url":null,"abstract":"An interferometric problem is the limited fringe density, which is due to the limited allowed slope difference of superimposed wave fronts. Thus, the angular dynamic range of measurable surfaces and objects under test is limited. In other words, all shapes that deviate from a plane surface or a sphere represent a measuring problem in interferometers, or require an individually adapted null optics, which might cost e.g. 10 k∈ or more. In addition, ground surfaces cannot be measured in standard interferometers, except by using Speckle interferometry, which is limited in resolution. Freeform optics are very problematic. Even when polished, only tactile or confocal coordinate measurement might work. Several interferometers address the problem of the angular deviation to a sphere. For instance, lateral stitching on a curved surface, which is equivalent to the best-fit sphere, or longitudinal stitching is used. To use a tilted wave interferometer for asphere metrology is another option, which provides versatile measurement configurations. The approach discussed here is to use optical filters. The development of this technique is part of a project most recently started at the Technology Campus in Teisnach. The surface under test (SUT) is imaged onto an optical filter, which has a calibrated angular selectivity. Thus, the angles of the local wave front normal vectors are transferred into an intensity distribution. A set of angular measurements enables reduced uncertainty of the wave front measurement. Aspects as e.g. the working principle, boundary conditions and the identification of practical filters are discussed in the paper.","PeriodicalId":422212,"journal":{"name":"Precision Optics Manufacturing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wave front sensing for metrology by using optical filter\",\"authors\":\"G. Fütterer\",\"doi\":\"10.1117/12.2530013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An interferometric problem is the limited fringe density, which is due to the limited allowed slope difference of superimposed wave fronts. Thus, the angular dynamic range of measurable surfaces and objects under test is limited. In other words, all shapes that deviate from a plane surface or a sphere represent a measuring problem in interferometers, or require an individually adapted null optics, which might cost e.g. 10 k∈ or more. In addition, ground surfaces cannot be measured in standard interferometers, except by using Speckle interferometry, which is limited in resolution. Freeform optics are very problematic. Even when polished, only tactile or confocal coordinate measurement might work. Several interferometers address the problem of the angular deviation to a sphere. For instance, lateral stitching on a curved surface, which is equivalent to the best-fit sphere, or longitudinal stitching is used. To use a tilted wave interferometer for asphere metrology is another option, which provides versatile measurement configurations. The approach discussed here is to use optical filters. The development of this technique is part of a project most recently started at the Technology Campus in Teisnach. The surface under test (SUT) is imaged onto an optical filter, which has a calibrated angular selectivity. Thus, the angles of the local wave front normal vectors are transferred into an intensity distribution. A set of angular measurements enables reduced uncertainty of the wave front measurement. Aspects as e.g. the working principle, boundary conditions and the identification of practical filters are discussed in the paper.\",\"PeriodicalId\":422212,\"journal\":{\"name\":\"Precision Optics Manufacturing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Optics Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2530013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Optics Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2530013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

干涉测量的一个问题是有限条纹密度,这是由于有限允许的斜率差叠加波前。因此,被测表面和被测物体的角动态范围是有限的。换句话说,所有偏离平面表面或球体的形状都代表干涉仪的测量问题,或者需要单独适应的零光学元件,这可能需要花费例如10 k∈或更多。此外,地面表面不能在标准干涉仪测量,除非使用散斑干涉,这是有限的分辨率。自由曲面光学是非常有问题的。即使经过抛光,也只能使用触觉或共聚焦坐标测量。一些干涉仪解决了到球体的角偏差问题。例如,在曲面上使用横向拼接,相当于最适合的球体,或者使用纵向拼接。使用倾斜波干涉仪进行非球面测量是另一种选择,它提供了多种测量配置。这里讨论的方法是使用光学滤光片。这项技术的开发是泰斯纳赫技术园区最近启动的一个项目的一部分。被测表面(SUT)成像到光学滤光片上,该滤光片具有校准过的角选择性。因此,局部波前法向量的角度被转换为强度分布。一组角度测量可以减少波前测量的不确定性。本文从工作原理、边界条件和实际滤波器的辨识等方面进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wave front sensing for metrology by using optical filter
An interferometric problem is the limited fringe density, which is due to the limited allowed slope difference of superimposed wave fronts. Thus, the angular dynamic range of measurable surfaces and objects under test is limited. In other words, all shapes that deviate from a plane surface or a sphere represent a measuring problem in interferometers, or require an individually adapted null optics, which might cost e.g. 10 k∈ or more. In addition, ground surfaces cannot be measured in standard interferometers, except by using Speckle interferometry, which is limited in resolution. Freeform optics are very problematic. Even when polished, only tactile or confocal coordinate measurement might work. Several interferometers address the problem of the angular deviation to a sphere. For instance, lateral stitching on a curved surface, which is equivalent to the best-fit sphere, or longitudinal stitching is used. To use a tilted wave interferometer for asphere metrology is another option, which provides versatile measurement configurations. The approach discussed here is to use optical filters. The development of this technique is part of a project most recently started at the Technology Campus in Teisnach. The surface under test (SUT) is imaged onto an optical filter, which has a calibrated angular selectivity. Thus, the angles of the local wave front normal vectors are transferred into an intensity distribution. A set of angular measurements enables reduced uncertainty of the wave front measurement. Aspects as e.g. the working principle, boundary conditions and the identification of practical filters are discussed in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast, semi-automated geometric and functional characterization of miniaturized lenses using optical coherence tomography-based systems and wavefront sensors Simulation of system transmission values for different angles of incidence Acoustic emissions in the glass polishing process: a possible approach for process monitoring Conceptual considerations for the paperless production of ophthalmic lenses Superposition of cryogenic and ultrasonic assisted machining of Zerodur
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1