机器学习在电力系统动态安全评估中的应用

E. M. Voumvoulakis, A. E. Gavoyiannis, N. Hatziargyriou
{"title":"机器学习在电力系统动态安全评估中的应用","authors":"E. M. Voumvoulakis, A. E. Gavoyiannis, N. Hatziargyriou","doi":"10.1109/ISAP.2007.4441604","DOIUrl":null,"url":null,"abstract":"This paper addresses the on going work of the application of Machine Learning on Dynamic Security Assessment of Power Systems. Several techniques, which have been applied for the Dynamic Security Assessment of the Greek Power System are presented. These techniques include off-line Supervised learning (Radial Basis Function Neural Networks, Support Vector Machines, Decision Trees), off-line Unsupervised learning (Self Organizing Maps) and online Supervised learning (Probabilistic Neural Networks). Results from the application of these methods on operating point series from the Greek Mainland system and the Power System of Crete island show the accuracy and versatility of the methods.","PeriodicalId":320068,"journal":{"name":"2007 International Conference on Intelligent Systems Applications to Power Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Application of Machine Learning on Power System Dynamic Security Assessment\",\"authors\":\"E. M. Voumvoulakis, A. E. Gavoyiannis, N. Hatziargyriou\",\"doi\":\"10.1109/ISAP.2007.4441604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the on going work of the application of Machine Learning on Dynamic Security Assessment of Power Systems. Several techniques, which have been applied for the Dynamic Security Assessment of the Greek Power System are presented. These techniques include off-line Supervised learning (Radial Basis Function Neural Networks, Support Vector Machines, Decision Trees), off-line Unsupervised learning (Self Organizing Maps) and online Supervised learning (Probabilistic Neural Networks). Results from the application of these methods on operating point series from the Greek Mainland system and the Power System of Crete island show the accuracy and versatility of the methods.\",\"PeriodicalId\":320068,\"journal\":{\"name\":\"2007 International Conference on Intelligent Systems Applications to Power Systems\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Intelligent Systems Applications to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP.2007.4441604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Intelligent Systems Applications to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2007.4441604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文介绍了机器学习在电力系统动态安全评估中的应用。介绍了几种用于希腊电力系统动态安全评估的技术。这些技术包括离线监督学习(径向基函数神经网络,支持向量机,决策树),离线无监督学习(自组织映射)和在线监督学习(概率神经网络)。将这些方法应用于希腊大陆系统和克里特岛电力系统的运行点序列,结果表明了这些方法的准确性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Machine Learning on Power System Dynamic Security Assessment
This paper addresses the on going work of the application of Machine Learning on Dynamic Security Assessment of Power Systems. Several techniques, which have been applied for the Dynamic Security Assessment of the Greek Power System are presented. These techniques include off-line Supervised learning (Radial Basis Function Neural Networks, Support Vector Machines, Decision Trees), off-line Unsupervised learning (Self Organizing Maps) and online Supervised learning (Probabilistic Neural Networks). Results from the application of these methods on operating point series from the Greek Mainland system and the Power System of Crete island show the accuracy and versatility of the methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Online Estimate of System Parameters For Adaptive Tuning on Automatic Generation Control Exploiting Multi-agent System Technology within an Autonomous Regional Active Network Management System PC Cluster based Parallel PSO Algorithm for Optimal Power Flow MFFN based Static Synchronous Series Compensator (SSSC) for Transient Stability improvement Reactive Power Management in Offshore Wind Farms by Adaptive PSO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1