基于关键词抽象方法的泰语文本自动摘要

Parun Ngamcharoen, Nuttapong Sanglerdsinlapachai, P. Vejjanugraha
{"title":"基于关键词抽象方法的泰语文本自动摘要","authors":"Parun Ngamcharoen, Nuttapong Sanglerdsinlapachai, P. Vejjanugraha","doi":"10.1109/iSAI-NLP56921.2022.9960265","DOIUrl":null,"url":null,"abstract":"Traditionally, the training phase of abstractive text summarization involves inputting two sets of integer sequences; the first set representing the source text, and the second set representing words existing in the reference summary, into the encoder and decoder parts of the model, respectively. However, by using this method, the model tends to perform poorly if the source text includes words which are irrelevant or insignificant to the key ideas. In order to address this issue, we propose a new keywords-based method for abstractive summarization by combining the information provided by the source text and its keywords to generate summary. We utilize a bi-directional long short-term memory model for keyword labelling, using overlapping words between the source text and the reference summary as ground truth. The results obtained from our experiments on ThaiSum dataset show that our proposed method outperforms the traditional encoder-decoder model by 0.0425 on ROUGE-1 F1, 0.0301 on ROUGE-2 F1 and 0.0140 on BERTScore Fl.","PeriodicalId":399019,"journal":{"name":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Thai Text Summarization Using Keyword-Based Abstractive Method\",\"authors\":\"Parun Ngamcharoen, Nuttapong Sanglerdsinlapachai, P. Vejjanugraha\",\"doi\":\"10.1109/iSAI-NLP56921.2022.9960265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditionally, the training phase of abstractive text summarization involves inputting two sets of integer sequences; the first set representing the source text, and the second set representing words existing in the reference summary, into the encoder and decoder parts of the model, respectively. However, by using this method, the model tends to perform poorly if the source text includes words which are irrelevant or insignificant to the key ideas. In order to address this issue, we propose a new keywords-based method for abstractive summarization by combining the information provided by the source text and its keywords to generate summary. We utilize a bi-directional long short-term memory model for keyword labelling, using overlapping words between the source text and the reference summary as ground truth. The results obtained from our experiments on ThaiSum dataset show that our proposed method outperforms the traditional encoder-decoder model by 0.0425 on ROUGE-1 F1, 0.0301 on ROUGE-2 F1 and 0.0140 on BERTScore Fl.\",\"PeriodicalId\":399019,\"journal\":{\"name\":\"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSAI-NLP56921.2022.9960265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP56921.2022.9960265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统上,抽象文本摘要的训练阶段包括输入两组整数序列;第一组表示源文本,第二组表示参考摘要中存在的单词,分别进入模型的编码器和解码器部分。然而,通过使用这种方法,如果源文本包含与关键思想无关或无关紧要的单词,则模型往往表现不佳。为了解决这一问题,我们提出了一种新的基于关键词的抽象摘要方法,将源文本提供的信息和关键字结合起来生成摘要。我们利用双向长短期记忆模型进行关键词标注,使用源文本和参考摘要之间的重叠词作为基础事实。在ThaiSum数据集上的实验结果表明,我们提出的方法在ROUGE-1 F1、ROUGE-2 F1和BERTScore Fl上的性能分别比传统的编码器-解码器模型高0.0425、0.0301和0.0140。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Thai Text Summarization Using Keyword-Based Abstractive Method
Traditionally, the training phase of abstractive text summarization involves inputting two sets of integer sequences; the first set representing the source text, and the second set representing words existing in the reference summary, into the encoder and decoder parts of the model, respectively. However, by using this method, the model tends to perform poorly if the source text includes words which are irrelevant or insignificant to the key ideas. In order to address this issue, we propose a new keywords-based method for abstractive summarization by combining the information provided by the source text and its keywords to generate summary. We utilize a bi-directional long short-term memory model for keyword labelling, using overlapping words between the source text and the reference summary as ground truth. The results obtained from our experiments on ThaiSum dataset show that our proposed method outperforms the traditional encoder-decoder model by 0.0425 on ROUGE-1 F1, 0.0301 on ROUGE-2 F1 and 0.0140 on BERTScore Fl.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Evaluation of Interviewer's Presentation Styles for Interview Practice with a Communicative Robot An Analysis of Acoustic Features for Attention Score in Thai MoCA Assessment Convolutional Time Delay Neural Network for Khmer Automatic Speech Recognition ThEconSum: an Economics-domained Dataset for Thai Text Summarization and Baseline Models Using the MQTT Broker as a Speech-Activated Medium to Control the Operation of Devices in the Smart Office
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1