{"title":"协同物理合成可制造性和可变性在45纳米及以上的设计","authors":"D. Pan, Minsik Cho","doi":"10.1109/ASPDAC.2008.4483945","DOIUrl":null,"url":null,"abstract":"Nanometer IC designs are increasingly challenged by manufacturing closure, i.e., being fabricated with high product yield, mainly due to aggressive technology scaling and increasing process/environmental variations. Realizing the criticality of addressing manufacturability for higher yield and tolerance to variations during design, there has been a surge of research activities recently from both academia and industry. In this paper, we will survey the key activities in synergistic physical synthesis and shed lights on some of the future research directions.","PeriodicalId":277556,"journal":{"name":"2008 Asia and South Pacific Design Automation Conference","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Synergistic physical synthesis for manufacturability and variability in 45nm designs and beyond\",\"authors\":\"D. Pan, Minsik Cho\",\"doi\":\"10.1109/ASPDAC.2008.4483945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanometer IC designs are increasingly challenged by manufacturing closure, i.e., being fabricated with high product yield, mainly due to aggressive technology scaling and increasing process/environmental variations. Realizing the criticality of addressing manufacturability for higher yield and tolerance to variations during design, there has been a surge of research activities recently from both academia and industry. In this paper, we will survey the key activities in synergistic physical synthesis and shed lights on some of the future research directions.\",\"PeriodicalId\":277556,\"journal\":{\"name\":\"2008 Asia and South Pacific Design Automation Conference\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Asia and South Pacific Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2008.4483945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Asia and South Pacific Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2008.4483945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synergistic physical synthesis for manufacturability and variability in 45nm designs and beyond
Nanometer IC designs are increasingly challenged by manufacturing closure, i.e., being fabricated with high product yield, mainly due to aggressive technology scaling and increasing process/environmental variations. Realizing the criticality of addressing manufacturability for higher yield and tolerance to variations during design, there has been a surge of research activities recently from both academia and industry. In this paper, we will survey the key activities in synergistic physical synthesis and shed lights on some of the future research directions.