Shukai Tang, Liucheng Li, L. Duo, Yuanhu Wang, Haijun Yu, Yuqi Jin, F. Sang
{"title":"基于高频化学激光器第一泛音自发发射光谱的光腔温度测量","authors":"Shukai Tang, Liucheng Li, L. Duo, Yuanhu Wang, Haijun Yu, Yuqi Jin, F. Sang","doi":"10.1117/12.2065282","DOIUrl":null,"url":null,"abstract":"An optical cavity temperature test method has been established for the HF chemical laser. This method assumes that in HF optical cavity the rotational distribution of vibrationally excited HF molecules meets the statistical thermodynamic distribution, the first overtones (v = 3-1 and 2-0) spontaneous emission spectral intensity distribution is obtained by using OMA V, the optical cavity temperature is calculated by linear fitting the rotational thermal equilibrium distribution formula for each HF vibrationally excited state. This method is simple, reliable, and repeatable. This method can be used to test the optical cavity temperature not only without lasing, but also with lasing.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optical cavity temperature measurement based on the first overtones spontaneous emission spectra for HF chemical laser\",\"authors\":\"Shukai Tang, Liucheng Li, L. Duo, Yuanhu Wang, Haijun Yu, Yuqi Jin, F. Sang\",\"doi\":\"10.1117/12.2065282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An optical cavity temperature test method has been established for the HF chemical laser. This method assumes that in HF optical cavity the rotational distribution of vibrationally excited HF molecules meets the statistical thermodynamic distribution, the first overtones (v = 3-1 and 2-0) spontaneous emission spectral intensity distribution is obtained by using OMA V, the optical cavity temperature is calculated by linear fitting the rotational thermal equilibrium distribution formula for each HF vibrationally excited state. This method is simple, reliable, and repeatable. This method can be used to test the optical cavity temperature not only without lasing, but also with lasing.\",\"PeriodicalId\":293926,\"journal\":{\"name\":\"International Symposium on High Power Laser Systems and Applications\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on High Power Laser Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2065282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on High Power Laser Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2065282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optical cavity temperature measurement based on the first overtones spontaneous emission spectra for HF chemical laser
An optical cavity temperature test method has been established for the HF chemical laser. This method assumes that in HF optical cavity the rotational distribution of vibrationally excited HF molecules meets the statistical thermodynamic distribution, the first overtones (v = 3-1 and 2-0) spontaneous emission spectral intensity distribution is obtained by using OMA V, the optical cavity temperature is calculated by linear fitting the rotational thermal equilibrium distribution formula for each HF vibrationally excited state. This method is simple, reliable, and repeatable. This method can be used to test the optical cavity temperature not only without lasing, but also with lasing.