{"title":"质量通孔阵列的传热性能研究","authors":"Devin A. Smarra, M. Wicks, V. Chodavarapu","doi":"10.1109/NAECON46414.2019.9058183","DOIUrl":null,"url":null,"abstract":"This paper analyzes the heat spreading capabilities of conventional Mass Via Arrays (MVA). Modelling and simulation are performed for MVAs and are compared to equivalent measurements for Thermal Via Arrays (TVA). Based on this analysis we determine that an MVA with many interspersed heat spreaders provides superior heat spreading when compared to regular TVAs.","PeriodicalId":193529,"journal":{"name":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Study of the Heat Spreading Capabilities of Mass Via Arrays\",\"authors\":\"Devin A. Smarra, M. Wicks, V. Chodavarapu\",\"doi\":\"10.1109/NAECON46414.2019.9058183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes the heat spreading capabilities of conventional Mass Via Arrays (MVA). Modelling and simulation are performed for MVAs and are compared to equivalent measurements for Thermal Via Arrays (TVA). Based on this analysis we determine that an MVA with many interspersed heat spreaders provides superior heat spreading when compared to regular TVAs.\",\"PeriodicalId\":193529,\"journal\":{\"name\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON46414.2019.9058183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON46414.2019.9058183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Study of the Heat Spreading Capabilities of Mass Via Arrays
This paper analyzes the heat spreading capabilities of conventional Mass Via Arrays (MVA). Modelling and simulation are performed for MVAs and are compared to equivalent measurements for Thermal Via Arrays (TVA). Based on this analysis we determine that an MVA with many interspersed heat spreaders provides superior heat spreading when compared to regular TVAs.