线性锥形有限圆柱体的细胞涡脱落

D. M. Rooney, J. Vaccaro, R. Smijtink
{"title":"线性锥形有限圆柱体的细胞涡脱落","authors":"D. M. Rooney, J. Vaccaro, R. Smijtink","doi":"10.1115/fedsm2020-20043","DOIUrl":null,"url":null,"abstract":"\n Hot-wire measurements were taken in the wake of ten finite length circular cylinders, six of which were also tapered, in a uniform flow in a low speed wind tunnel. The Reynolds number based on mean cylinder diameter ranged from 2100 ≤ Re ≤ 5500, the aspect ratio (AR) of the cylinders varied from 16 ≤ AR ≤ 64, and the taper ratio (RT) varied from 21.3 ≤ RT ≤ 96. The vortex shedding along the spans of the cylinders coalesced into discrete cells, the range of Strouhal numbers and the number of cells being a function of the cylinder aspect ratio and taper ratio. It was found that the number of discrete cells is linearly related to a cylinder geometry ratio (CGR) defined as CGR = AR(1 + AR/RT).","PeriodicalId":333138,"journal":{"name":"Volume 2: Fluid Mechanics; Multiphase Flows","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellular Vortex Shedding From Linearly Tapered Finite Cylinders\",\"authors\":\"D. M. Rooney, J. Vaccaro, R. Smijtink\",\"doi\":\"10.1115/fedsm2020-20043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Hot-wire measurements were taken in the wake of ten finite length circular cylinders, six of which were also tapered, in a uniform flow in a low speed wind tunnel. The Reynolds number based on mean cylinder diameter ranged from 2100 ≤ Re ≤ 5500, the aspect ratio (AR) of the cylinders varied from 16 ≤ AR ≤ 64, and the taper ratio (RT) varied from 21.3 ≤ RT ≤ 96. The vortex shedding along the spans of the cylinders coalesced into discrete cells, the range of Strouhal numbers and the number of cells being a function of the cylinder aspect ratio and taper ratio. It was found that the number of discrete cells is linearly related to a cylinder geometry ratio (CGR) defined as CGR = AR(1 + AR/RT).\",\"PeriodicalId\":333138,\"journal\":{\"name\":\"Volume 2: Fluid Mechanics; Multiphase Flows\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Fluid Mechanics; Multiphase Flows\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/fedsm2020-20043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Mechanics; Multiphase Flows","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2020-20043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

热线测量是在低速风洞中均匀流动的10个有限长圆柱体的尾迹中进行的,其中6个也是锥形的。基于平均圆柱体直径的雷诺数范围为2100≤Re≤5500,圆柱体长径比(AR)范围为16≤AR≤64,锥度比(RT)范围为21.3≤RT≤96。沿柱体跨度的漩涡脱落合并成离散的单元,斯特劳哈尔数的范围和单元数是柱体长径比和锥度比的函数。研究发现,离散单元的数量与圆柱体几何比(CGR)线性相关,CGR定义为CGR = AR(1 + AR/RT)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cellular Vortex Shedding From Linearly Tapered Finite Cylinders
Hot-wire measurements were taken in the wake of ten finite length circular cylinders, six of which were also tapered, in a uniform flow in a low speed wind tunnel. The Reynolds number based on mean cylinder diameter ranged from 2100 ≤ Re ≤ 5500, the aspect ratio (AR) of the cylinders varied from 16 ≤ AR ≤ 64, and the taper ratio (RT) varied from 21.3 ≤ RT ≤ 96. The vortex shedding along the spans of the cylinders coalesced into discrete cells, the range of Strouhal numbers and the number of cells being a function of the cylinder aspect ratio and taper ratio. It was found that the number of discrete cells is linearly related to a cylinder geometry ratio (CGR) defined as CGR = AR(1 + AR/RT).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lattice Boltzmann Method Based on Large-Eddy Simulation (LES) Used to Investigate the Unsteady Turbulent Flow on Series of Cavities Unified Assessment Approach for Courses With Simulation Component [And Professors in Hurry] Stereo-PIV Measurements of Turbulent Swirling Flow Inside a Pipe WearGP: A UQ/ML Wear Prediction Framework for Slurry Pump Impellers and Casings Optimal Control Strategy to Distribute Water Through Loop-Like Planar Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1