利用Google街景和计算机视觉跟踪城市可达性演变的可行性研究

Ladan Najafizadeh, Jon E. Froehlich
{"title":"利用Google街景和计算机视觉跟踪城市可达性演变的可行性研究","authors":"Ladan Najafizadeh, Jon E. Froehlich","doi":"10.1145/3234695.3240999","DOIUrl":null,"url":null,"abstract":"Previous work has explored scalable methods to collect data on the accessibility of the built environment by combining manual labeling, computer vision, and online map imagery. In this poster paper, we explore how to extend these methods to track the evolution of urban accessibility over time. Using Google Street View's \"time machine\" feature, we introduce a three-stage classification framework: (i) manually labeling accessibility problems in one time period; (ii) classifying the labeled image patch into one of five accessibility categories; (iii) localizing the patch in all previous snapshots. Our preliminary results analyzing 1633 Street View images across 376 locations demonstrate feasibility.","PeriodicalId":110197,"journal":{"name":"Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A Feasibility Study of Using Google Street View and Computer Vision to Track the Evolution of Urban Accessibility\",\"authors\":\"Ladan Najafizadeh, Jon E. Froehlich\",\"doi\":\"10.1145/3234695.3240999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous work has explored scalable methods to collect data on the accessibility of the built environment by combining manual labeling, computer vision, and online map imagery. In this poster paper, we explore how to extend these methods to track the evolution of urban accessibility over time. Using Google Street View's \\\"time machine\\\" feature, we introduce a three-stage classification framework: (i) manually labeling accessibility problems in one time period; (ii) classifying the labeled image patch into one of five accessibility categories; (iii) localizing the patch in all previous snapshots. Our preliminary results analyzing 1633 Street View images across 376 locations demonstrate feasibility.\",\"PeriodicalId\":110197,\"journal\":{\"name\":\"Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3234695.3240999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3234695.3240999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

之前的工作已经探索了可扩展的方法,通过结合人工标记、计算机视觉和在线地图图像来收集建筑环境的可达性数据。在这篇海报论文中,我们探讨了如何扩展这些方法来跟踪城市可达性随时间的演变。利用谷歌街景的“时间机器”功能,我们引入了一个三阶段分类框架:(i)手动标记一个时间段内的可访问性问题;(ii)将标记的图像块划分为五个可访问性类别之一;(iii)本地化之前所有快照中的补丁。我们的初步结果分析了376个地点的1633张街景图像,证明了可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Feasibility Study of Using Google Street View and Computer Vision to Track the Evolution of Urban Accessibility
Previous work has explored scalable methods to collect data on the accessibility of the built environment by combining manual labeling, computer vision, and online map imagery. In this poster paper, we explore how to extend these methods to track the evolution of urban accessibility over time. Using Google Street View's "time machine" feature, we introduce a three-stage classification framework: (i) manually labeling accessibility problems in one time period; (ii) classifying the labeled image patch into one of five accessibility categories; (iii) localizing the patch in all previous snapshots. Our preliminary results analyzing 1633 Street View images across 376 locations demonstrate feasibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Examining Image-Based Button Labeling for Accessibility in Android Apps through Large-Scale Analysis HoloLearn "Siri Talks at You": An Empirical Investigation of Voice-Activated Personal Assistant (VAPA) Usage by Individuals Who Are Blind BrightLights: Gamifying Data Capture for Situational Visual Impairments Tangicraft
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1