{"title":"未来飞机数据通信和管理将成为航空4.0概念的一部分","authors":"Jakub Sekera, A. Novák","doi":"10.26552/pas.z.2021.2.47","DOIUrl":null,"url":null,"abstract":"Data communication and management represent a crucial part of future systems in aviation. Huge recent technological advancements have led the whole aeronautical industry into the new evolutionary era called Aviation 4.0. The goal of Aviation 4.0 is the creation of cyber-physical system, following the path from advanced automation, to very first autonomy systems efficiently assisting human. This system involves multiple direct data related applications and devices, including AI analytics, massive use of IoT devices, machine learning capabilities, or advanced monitoring. Due to needed enormous flow of data, current connectivity solutions are becoming insufficient for the future use cases. Near future connectivity problems may become very apparent in datalink. With exponentially increasing amount of data needed by the future aircraft systems, higher datalink communication capacity and better performance of datalink subnetwork are required to meet the higher performance standards and levels of operational safety. This paper offers complex overview of current datalink communication technologies, planned concepts and possible solutions to the problem, in the form of new datalink technology – LEO mega satellite constellation offering Internet connectivity. Through basic deductive research, paper is aimed to study existing datalinks and proposed new LEO satellite communication datalink, evaluating their performance based on the future datalink requirements stated in studied plans and roadmaps. Furthermore, Aviation 4.0 dominant aspects are studied, requirements on future data communication technology are declared, and the possible use cases of Aviation 4.0 smart aircraft systems are showed. The objective of this paper is targeted to determination whether any of the researched datalink subnetwork would comply with Aviation 4.0 future datalink requirements.","PeriodicalId":142690,"journal":{"name":"Práce a štúdie - Vydanie 10","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The future of aircraft data communication and management as a part of aviation 4.0 concept\",\"authors\":\"Jakub Sekera, A. Novák\",\"doi\":\"10.26552/pas.z.2021.2.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data communication and management represent a crucial part of future systems in aviation. Huge recent technological advancements have led the whole aeronautical industry into the new evolutionary era called Aviation 4.0. The goal of Aviation 4.0 is the creation of cyber-physical system, following the path from advanced automation, to very first autonomy systems efficiently assisting human. This system involves multiple direct data related applications and devices, including AI analytics, massive use of IoT devices, machine learning capabilities, or advanced monitoring. Due to needed enormous flow of data, current connectivity solutions are becoming insufficient for the future use cases. Near future connectivity problems may become very apparent in datalink. With exponentially increasing amount of data needed by the future aircraft systems, higher datalink communication capacity and better performance of datalink subnetwork are required to meet the higher performance standards and levels of operational safety. This paper offers complex overview of current datalink communication technologies, planned concepts and possible solutions to the problem, in the form of new datalink technology – LEO mega satellite constellation offering Internet connectivity. Through basic deductive research, paper is aimed to study existing datalinks and proposed new LEO satellite communication datalink, evaluating their performance based on the future datalink requirements stated in studied plans and roadmaps. Furthermore, Aviation 4.0 dominant aspects are studied, requirements on future data communication technology are declared, and the possible use cases of Aviation 4.0 smart aircraft systems are showed. The objective of this paper is targeted to determination whether any of the researched datalink subnetwork would comply with Aviation 4.0 future datalink requirements.\",\"PeriodicalId\":142690,\"journal\":{\"name\":\"Práce a štúdie - Vydanie 10\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Práce a štúdie - Vydanie 10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26552/pas.z.2021.2.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Práce a štúdie - Vydanie 10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26552/pas.z.2021.2.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The future of aircraft data communication and management as a part of aviation 4.0 concept
Data communication and management represent a crucial part of future systems in aviation. Huge recent technological advancements have led the whole aeronautical industry into the new evolutionary era called Aviation 4.0. The goal of Aviation 4.0 is the creation of cyber-physical system, following the path from advanced automation, to very first autonomy systems efficiently assisting human. This system involves multiple direct data related applications and devices, including AI analytics, massive use of IoT devices, machine learning capabilities, or advanced monitoring. Due to needed enormous flow of data, current connectivity solutions are becoming insufficient for the future use cases. Near future connectivity problems may become very apparent in datalink. With exponentially increasing amount of data needed by the future aircraft systems, higher datalink communication capacity and better performance of datalink subnetwork are required to meet the higher performance standards and levels of operational safety. This paper offers complex overview of current datalink communication technologies, planned concepts and possible solutions to the problem, in the form of new datalink technology – LEO mega satellite constellation offering Internet connectivity. Through basic deductive research, paper is aimed to study existing datalinks and proposed new LEO satellite communication datalink, evaluating their performance based on the future datalink requirements stated in studied plans and roadmaps. Furthermore, Aviation 4.0 dominant aspects are studied, requirements on future data communication technology are declared, and the possible use cases of Aviation 4.0 smart aircraft systems are showed. The objective of this paper is targeted to determination whether any of the researched datalink subnetwork would comply with Aviation 4.0 future datalink requirements.