基于svm的基于Myo臂带肌电图数据的假肢手指实时分类

Muhammad Akmal, Muhammad Farrukh Qureshi, Faisal Amin, M. Z. Rehman, I. Niazi
{"title":"基于svm的基于Myo臂带肌电图数据的假肢手指实时分类","authors":"Muhammad Akmal, Muhammad Farrukh Qureshi, Faisal Amin, M. Z. Rehman, I. Niazi","doi":"10.1109/BIBE52308.2021.9635461","DOIUrl":null,"url":null,"abstract":"In this work we applied real-time classification of prosthetic fingers movements using surface electromyography (sEMG) data. We employed support vector machine (SVM) for classification of fingers movements. SVM has some benefits over other classification techniques e.g. 1) it avoids overfitting, 2) handles nonlinear data efficiently and 3) it is stable. SVM is employed on Raspberry pi which is a low-cost, credit-card sized computer with high processing power. Moreover, it supports Python which makes it easy to build projects and it has multiple interfaces available. In this paper, our aim is to perform classification of prosthetic hand relative to human fingers. To assess the performance of our framework we tested it on ten healthy subjects. Our framework was able to achieve mean classification accuracy of 78%.","PeriodicalId":343724,"journal":{"name":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"SVM-based Real-Time Classification of Prosthetic Fingers using Myo Armband-acquired Electromyography Data\",\"authors\":\"Muhammad Akmal, Muhammad Farrukh Qureshi, Faisal Amin, M. Z. Rehman, I. Niazi\",\"doi\":\"10.1109/BIBE52308.2021.9635461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we applied real-time classification of prosthetic fingers movements using surface electromyography (sEMG) data. We employed support vector machine (SVM) for classification of fingers movements. SVM has some benefits over other classification techniques e.g. 1) it avoids overfitting, 2) handles nonlinear data efficiently and 3) it is stable. SVM is employed on Raspberry pi which is a low-cost, credit-card sized computer with high processing power. Moreover, it supports Python which makes it easy to build projects and it has multiple interfaces available. In this paper, our aim is to perform classification of prosthetic hand relative to human fingers. To assess the performance of our framework we tested it on ten healthy subjects. Our framework was able to achieve mean classification accuracy of 78%.\",\"PeriodicalId\":343724,\"journal\":{\"name\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE52308.2021.9635461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE52308.2021.9635461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在这项工作中,我们使用表面肌电图(sEMG)数据对假肢手指运动进行实时分类。我们使用支持向量机(SVM)对手指运动进行分类。与其他分类技术相比,SVM具有以下优点:1)避免过拟合;2)有效处理非线性数据;3)稳定。支持向量机被用在树莓派上,树莓派是一种低成本、信用卡大小、具有高处理能力的计算机。此外,它支持Python,这使得构建项目变得容易,并且它有多个接口可用。在本文中,我们的目的是进行假手相对于人的手指的分类。为了评估我们的框架的性能,我们在10个健康的受试者身上进行了测试。我们的框架能够达到78%的平均分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SVM-based Real-Time Classification of Prosthetic Fingers using Myo Armband-acquired Electromyography Data
In this work we applied real-time classification of prosthetic fingers movements using surface electromyography (sEMG) data. We employed support vector machine (SVM) for classification of fingers movements. SVM has some benefits over other classification techniques e.g. 1) it avoids overfitting, 2) handles nonlinear data efficiently and 3) it is stable. SVM is employed on Raspberry pi which is a low-cost, credit-card sized computer with high processing power. Moreover, it supports Python which makes it easy to build projects and it has multiple interfaces available. In this paper, our aim is to perform classification of prosthetic hand relative to human fingers. To assess the performance of our framework we tested it on ten healthy subjects. Our framework was able to achieve mean classification accuracy of 78%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural, antimicrobial, and molecular docking study of 3-(1-(4-hydroxyphenyl)amino) ethylidene)chroman-2,4-dione and its corresponding Pd complex Multiple-Activation Parallel Convolution Network in Combination with t-SNE for the Classification of Mild Cognitive Impairment Analyzing the Impact of Resampling Approaches on Chest X-Ray Images for COVID-19 Identification in a Local Hierarchical Classification Scenario Analysis of knee joint forces in different types of jumps of top futsal players at the beginning and at the end of the preparation period Design and evaluation of a noninvasive tongue-computer interface for individuals with severe disabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1