数字图像中基于像素值排序和差分展开的可逆数据隐藏

Ntivuguruzwa Jean de La Croix, C. Islamy, T. Ahmad
{"title":"数字图像中基于像素值排序和差分展开的可逆数据隐藏","authors":"Ntivuguruzwa Jean de La Croix, C. Islamy, T. Ahmad","doi":"10.1109/COMNETSAT56033.2022.9994516","DOIUrl":null,"url":null,"abstract":"Pixel value ordering (PVO) and difference expansion (DE) are promising methods for digital image steganography. PVO is a steganographic method of digital images that deals with pixel values sorting before the data embedding. In digital image steganography, DE is a method for data protection based on hiding secret data in differences computed between pixels. Even though the previous methods based on PVO and DE tried to improve the embedding capacity and the stego image quality, improvement is still needed to increase both simultaneously. This work proposes a new method that combines PVO and DE to improve the number of embeddable areas and the embedding capacity in the pixels of a digital image. The experimental results showed that the maximum number of the embeddable regions within used images with the existing methods was increased from 17582 pixels to 131009 pixels, yielding the embedding capacity improvement from 6.70% up to 49.97%.","PeriodicalId":221444,"journal":{"name":"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Reversible Data Hiding using Pixel-Value-Ordering and Difference Expansion in Digital Images\",\"authors\":\"Ntivuguruzwa Jean de La Croix, C. Islamy, T. Ahmad\",\"doi\":\"10.1109/COMNETSAT56033.2022.9994516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pixel value ordering (PVO) and difference expansion (DE) are promising methods for digital image steganography. PVO is a steganographic method of digital images that deals with pixel values sorting before the data embedding. In digital image steganography, DE is a method for data protection based on hiding secret data in differences computed between pixels. Even though the previous methods based on PVO and DE tried to improve the embedding capacity and the stego image quality, improvement is still needed to increase both simultaneously. This work proposes a new method that combines PVO and DE to improve the number of embeddable areas and the embedding capacity in the pixels of a digital image. The experimental results showed that the maximum number of the embeddable regions within used images with the existing methods was increased from 17582 pixels to 131009 pixels, yielding the embedding capacity improvement from 6.70% up to 49.97%.\",\"PeriodicalId\":221444,\"journal\":{\"name\":\"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMNETSAT56033.2022.9994516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMNETSAT56033.2022.9994516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

像素值排序(PVO)和差分展开(DE)是很有前途的数字图像隐写方法。PVO是一种数字图像的隐写方法,它在数据嵌入之前处理像素值排序。在数字图像隐写术中,DE是一种基于隐藏在像素之间计算的差异中的秘密数据的数据保护方法。尽管之前基于PVO和DE的方法都试图提高嵌入容量和隐进图像质量,但仍需要改进以同时提高两者。本文提出了一种结合PVO和DE的新方法,以提高数字图像像素的可嵌入区域数量和嵌入容量。实验结果表明,使用现有方法,所使用图像的最大可嵌入区域数从17582像素增加到131009像素,嵌入容量从6.70%提高到49.97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reversible Data Hiding using Pixel-Value-Ordering and Difference Expansion in Digital Images
Pixel value ordering (PVO) and difference expansion (DE) are promising methods for digital image steganography. PVO is a steganographic method of digital images that deals with pixel values sorting before the data embedding. In digital image steganography, DE is a method for data protection based on hiding secret data in differences computed between pixels. Even though the previous methods based on PVO and DE tried to improve the embedding capacity and the stego image quality, improvement is still needed to increase both simultaneously. This work proposes a new method that combines PVO and DE to improve the number of embeddable areas and the embedding capacity in the pixels of a digital image. The experimental results showed that the maximum number of the embeddable regions within used images with the existing methods was increased from 17582 pixels to 131009 pixels, yielding the embedding capacity improvement from 6.70% up to 49.97%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Small-Scale Temperature Forecasting System using Time Series Models Applied in Ho Chi Minh City Clickbait Detection for Internet News Title with Deep Learning Feed Forward New Approach of Ensemble Method to Improve Performance of IDS using S-SDN Classifier Design and Implementation of On-Body Textile Antenna for Bird Tracking at 2.4 GHz Performance analysis of FBMC-PAM systems in frequency-selective Rayleigh fading channels in the presence of phase error
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1